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INNUMERACY



Introduction

"Math was always my worst subject."

"A million dollars, a billion, a trillion, whatever. It doesn't matter as long as we do something
about the problem."

"Jerry and I aren't going to Europe, what with all the terrorists."

Innumeracy, an inability to deal comfortably with the fundamental notions of number and
chance, plagues far too many otherwise knowledgeable citizens. The same people who cringe
when words such as "imply" and "infer" are confused react without a trace of embarrassment to
even the most egregious of numerical solecisms. I remember once listening to someone at a
party drone on about the difference between "continually" and "continuously." Later that
evening we were watching the news, and the TV weathercaster announced that there was a
50 percent chance of rain for Saturday and a 50 percent chance for Sunday, and concluded that
there was therefore a 100 percent chance of rain that weekend. The remark went right by the
self-styled grammarian, and even after I explained the mistake to him, he wasn't nearly as
indignant as he would have been had the weathercaster left a dangling participle. In fact, unlike
other failings which are hidden, mathematical illiteracy is often flaunted: "I can't even balance
my checkbook." "I'm a people person, not a numbers person." Or "I always hated math."

Part of the reason for this perverse pride in mathematical ignorance is that its consequences
are not usually as obvious as are those of other weaknesses. Because of this, and because I
firmly believe that people respond better to illustrative particulars than they do to general
exposition, this book will examine many real-world examples of innumeracy— stock scams,
choice of a spouse, newspaper psychics, diet and medical claims, the risk of terrorism, astrology,
sports records, elections, sex discrimination, UFOs, insurance and law, psychoanalysis,
parapsychology, lotteries, and drug testing among them.

I've tried not to pontificate excessively or to make too many sweeping generalizations about
popular culture or our educational system (a la Allan Bloom), but I have made a number of
general remarks and observations that I hope are supported by the examples. In my opinion,
some of the blocks to dealing comfortably with numbers and probabilities are due to quite natural
psychological responses to uncertainty, to coincidence, or to how a problem is framed. Others can



be attributed to anxiety, or to romantic misconceptions about the nature and importance of
mathematics.

One rarely discussed consequence of innumeracy is its link with belief in pseudoscience, and
the interrelationship between the two is here explored. In a society where genetic engineering,
laser technology, and microchip circuits are daily adding to our understanding of the world, it's
especially sad that a significant portion of our adult population still believes in Tarot cards,
channeling mediums, and crystal power.

Even more ominous is the gap between scientists' assessments of various risks and the
popular perceptions of those risks, a gap that threatens eventually to lead either to unfounded and
crippling anxieties or to impossible and economically paralyzing demands for risk-free guarantees.
Politicians are seldom a help in this regard since they deal with public opinion and are therefore
loath to clarify the likely hazards and trade-offs associated with almost any policy.

Because the book is largely concerned with various inadequacies—a lack of numerical
perspective, an exaggerated appreciation for meaningless coincidence, a credulous acceptance of
pseudosciences, an inability to recognize social trade-offs, and so on— much of the writing has a
debunking flavor to it. Nevertheless, I hope I've avoided the overly earnest and scolding tone
common to many such endeavors.

The approach throughout is gently mathematical, using some elementary ideas from
probability and statistics which, though deep in a sense, will require nothing more than
common sense and arithmetic. Some of the notions presented are rarely discussed in terms
accessible to a wide audience and are the kind of thing that my students, for example, often
enjoy but usually respond to with: "Will we need to know that for the quiz?" There won't be a
quiz, so they can be enjoyed freely, and the occasional difficult passage can be ignored with
impunity.

One contention of the book is that innumerate people characteristically have a strong
tendency to personalize—to be misled by their own experiences, or by the media's focus on
individuals and drama. From this it doesn't necessarily follow that mathematicians are
impersonal or formal. I'm not, and the book isn't either. My goal in writing it has been to
appeal to the educated but innumerate—at least to those whose fear of mathematics is not so
great that (num)(ber) is automatically read as (numb)(er). The book will have been well worth
the effort if it can begin to clarify just how much innumeracy pervades both our private and our
public lives.



1Examples and Principles

Two aristocrats are out horseback riding and one challenges the other to see which can come
up with the larger number. The second agrees to the contest, concentrates for a few minutes, and
proudly announces, "Three." The proposer of the game is quiet for half an hour, then finally
shrugs and concedes defeat.

A summer visitor enters a hardware store in Maine and buys a large number of expensive
items. The skeptical, reticent owner doesn't say a word as he adds the bill on the cash register.
When he's finished, he points to the total and watches as the man counts out $1,528.47. He then
methodically recounts the money once, twice, three times. The visitor finally asks if he's given
him the right amount of money, to which the Mainer grudgingly responds, "Just barely."

The mathematician G. H. Hardy was visiting his protege, the Indian mathematician
Ramanujan, in the hospital. To make small talk, he remarked that 1729, the number of the taxi
which had brought him, was a rather dull number, to which Ramanujan replied immediately, "No,
Hardy! No, Hardy! It is a very interesting number. It is the smallest number expressible as the sum
of two cubes in two different ways."

BIG NUMBERS, SMALL PROBABILITIES

People's facility with numbers ranges from the aristocratic to the Ramanujanian, but it's an
unfortunate fact that most are on the aristocrats' side of our old Mainer. I'm always amazed and
depressed when I encounter students who have no idea what the population of the United States
is, or the approximate distance from coast to coast, or roughly what percentage of the world is
Chinese. I sometimes ask them as an exercise to estimate how fast human hair grows in miles per
hour, or approximately how many people die on earth each day, or how many cigarettes are
smoked annually in this country. Despite some initial reluctance (one student maintained that
hair just doesn't grow in miles per hour), they often improve their feeling for numbers dra-
matically.

Without some appreciation of common large numbers, it's impossible to react with the proper
skepticism to terrifying reports that more than a million American kids are kidnapped each year,
or with the proper sobriety to a warhead carrying a megaton of explosive power—the equivalent of a
million tons (or two billion pounds) of TNT.



And if you don't have some feeling for probabilities, automobile accidents might seem a
relatively minor problem of local travel, whereas being killed by terrorists might seem to be a
major risk when going overseas. As often observed, however, the 45,000 people killed annually on
American roads are approximately equal in number to all American dead in the Vietnam War. On
the other hand, the seventeen Americans killed by terrorists in 1985 were among the 28 million of
us who traveled abroad that year—that's one chance in 1.6 million of becoming a victim. Compare
that with these annual rates in the United States: one chance in 68,000 of choking to death; one
chance in 75,000 of dying in a bicycle crash; one chance in 20,000 of drowning; and one chance in
only 5,300 of dying in a car crash.

Confronted with these large numbers and with the correspondingly small probabilities
associated with them, the innumerate will inevitably respond with the non sequitur, "Yes, but
what if you're that one," and then nod knowingly, as if they've demolished your argument with
their penetrating insight. This tendency to personalize is, as we'll see, a characteristic of many
people who suffer from innumeracy. Equally typical is a tendency to equate the risk from some
obscure and exotic malady with the chances of suffering from heart and circulatory disease,
from which about 12,000 Americans die each week.

There's a joke I like that's marginally relevant. An old married couple in their nineties
contact a divorce lawyer, who pleads with them to stay together. "Why get divorced now after
seventy years of marriage? Why not last it out? Why now?" The little old lady finally pipes up
in a creaky voice: "We wanted to wait until the children were dead."

A feeling for what quantities or time spans are appropriate in various contexts is essential
to getting the joke. Slipping between millions and billions or between billions and trillions
should in this sense be equally funny, but it isn't, because we too often lack an intuitive feeling
for these numbers. Many educated people have little grasp for these numbers and are even
unaware that a million is 1,000,000; a billion is 1,000,000,000; and a trillion,
1,000,000,000,000.

A recent study by Drs. Kronlund and Phillips of the University of Washington showed
that most doctors' assessments of the risks of various operations, procedures, and medications
(even in their own specialties) were way off the mark, often by several orders of magnitude. I
once had a conversation with a doctor who, within approximately twenty minutes, stated that
a certain procedure he was contemplating (a) had a one-chance-in-a-million risk associated with
it; (6) was 99 percent safe; and (c) usually went quite well. Given the fact that so many doctors
seem to believe that there must be at least eleven people in the waiting room if they're to avoid
being idle, I'm not surprised at this new evidence of their innumeracy.

For very big or very small numbers, so-called scientific notation is often clearer and easier
to work with than standard notation and I'll therefore sometimes use it. There's nothing very
tricky about it: 10N is 1 with N zeroes following it, so 104 is 10,000 and 109 is a billion. 10-N is 1
divided by 10N, so 10-4 is 1 divided by 10,000 or .0001 and 10-2 is one hundredth. 4 x 106 is 4 x
1,000,000 or 4,000,000; 5.3 x 108 is 5.3 x 100,000,000 or 530,000,000; 2 x 10-3 is 2 x 1/1,000
or .002; 3.4 x 10-7 is 3.4 x 1/10,000,000 or .00000034.

Why don't news magazines and newspapers make appropriate use of scientific notation in
their stories? The notation is not nearly as arcane as many of the topics discussed in these
media, and it's considerably more useful than the abortive switch to the metric system about



which so many boring articles were written. The expression 7.39842 x 1010 is more
comprehensible and legible than seventy-three billion nine hundred and eighty-four million
and two hundred thousand.

Expressed in scientific notation, the answers to the questions posed earlier are: human hair
grows at a rate of roughly 10-8 miles per hour; approximately 2.5 x 105 people die each day on
earth; and approximately 5 x 1011 cigarettes are smoked each year in the United States.
Standard notation for these numbers is: .00000001 miles per hour; about 250,000 people;
approximately 500,000,000,000 cigarettes.

BLOOD, MOUNTAINS, AND BURGERS

In a Scientific American column on innumeracy, the computer scientist Douglas Hofstadter
cites the case of the Ideal Toy Company, which stated on the package of the original Rubik
cube that there were more than three billion possible states the cube could attain. Calculations
show that there are more than 4 x 1019 possible states, 4 with 19 zeroes after it. What the
package says isn't wrong; there are more than three billion possible states. The understate-
ment, however, is symptomatic of a pervasive innumeracy which ill suits a technologically
based society. It's analogous to a sign at the entrance to the Lincoln Tunnel stating: New
York, population more than 6; or McDonald's proudly announcing that they've sold more than
120 hamburgers.

The number 4 x 1019 is not exactly commonplace, but numbers like ten thousand, one
million, and a trillion are. Examples of collections each having a million elements, a billion
elements, and so on, should be at hand for quick comparison. For example, knowing that it
takes only about eleven and a half days for a million seconds to tick away, whereas almost
thirty-two years are required for a billion seconds to pass, gives one a better grasp of the
relative magnitudes of these two common numbers. What about trillions? Modern Homo sapiens
is probably less than 10 trillion seconds old; and the subsequent complete disappearance of the
Neanderthal version of early Homo sapiens occurred only a trillion or so seconds ago.
Agriculture's been here for approximately 300 billion seconds (ten thousand years), writing for
about 150 billion seconds, and rock music has been around for only about one billion seconds.

More common sources of such large numbers are the trillion-dollar federal budget and our
burgeoning weapons stockpiles. Given a U.S. population of about 250 million people, every
billion dollars in the federal budget translates into $4 for every American. Thus, an annual
Defense Department budget of almost a third of a trillion dollars amounts to approximately
$5,000 per year for a family of four. What have all these expenditures (ours and theirs) bought
over the years? The TNT equivalent of all the nuclear weapons in the world amounts to 25,000
megatons, or 50 trillion pounds, or 10,000 pounds for every man, woman, and child on earth.
(One pound in a car, incidentally, demolishes the car and kills everyone in it.) The nuclear
weapons on board just one of our Trident submarines contain eight times the firepower
expended in all of World War II.



To cite some happier illustrations for smaller numbers, the standard I use for the lowly
thousand is a section of Veterans Stadium in Philadelphia which I know contains 1,008 seats
and which is easy to picture. The north wall of a garage near my house contains almost exactly
ten thousand narrow bricks. For one hundred thousand, I generally think of the number of
words in a good-sized novel.

To get a handle on big numbers, it's useful to come up with one or two collections such as
the above corresponding to each power of ten, up to maybe 13 or 14. The more personal you can
make these collections, the better. It's also good practice to estimate whatever quantity piques
your curiosity: How many pizzas are consumed each year in the United States? How many
words have you spoken in your life? How many different people's names appear in The New
York Times each year? How many watermelons would fit inside the U.S. Capitol building?

Compute roughly how many acts of sexual intercourse occur each day in the world. Does the
number vary much from day to day? Estimate the number of potential human beings, given all the
human ova and sperm there have ever been, and you find that the ones who make it to
actuality are ipso facto incredibly, improbably fortunate.

These estimations are generally quite easy and often suggestive. For example, what is the
volume of all the human blood in the world? The average adult male has about six quarts of
blood, adult women slightly less, children considerably less. Thus, if we estimate that on
average each of the approximately 5 billion people in the world has about one gallon of blood,
we get about 5 billion (5 x 109) gallons of blood in the world. Since there are about 7.5 gallons
per cubic foot, there are approximately 6.7 x 108 cubic feet of blood. The cube root of 6.7 x 108

is 870. Thus, all the blood in the world would fit into a cube 870 feet on a side, less than l/200th
of a cubic mile!,

Central Park in New York has an area of 840 acres, or about 1.3 square miles. If walls
were built about it, all the blood in the world would cover the park to a depth of something under 20
feet. The Dead Sea on the Israel-Jordan border has an area of 390 square miles. If all the world's
blood were put into the Dead Sea, it would add only three-fourths of an inch to its depth. Even
without any particular context, these figures are surprising; there isn't that much blood in the
world! Compare this with the volume of all the grass, or of all the leaves, or of all the algae in the
world, and man's marginal status among life forms, at least volume-wise, is vividly apparent.

Switching dimensions for a moment, consider the ratio of the speed of the supersonic
Concorde, which travels about 2,000 miles per hour, to that of a snail, which moves 25 feet per
hour, a pace equivalent to about .005 miles per hour. The Concorde's velocity is 400,000 times that
of the snail. An even more impressive ratio is that between the speed with which an average
computer adds ten-digit numbers and the rate at which human calculators do so. Computers perform
this task more than a million times faster than we do with our snail-like scratchings, and for
supercomputers the ratio is over a billion to one.

One last earthly calculation that a scientific consultant from M.I.T. uses to weed out prospective
employees during job interviews: How long, he asks, would it take dump trucks to cart away an
isolated mountain, say Japan's Mount Fuji, to ground level? Assume trucks come every fifteen
minutes, twenty-four hours a day, are instantaneously filled with mountain dirt and rock, and
leave without getting in each other's way. The answer's a little surprising and will be given later.



GARGANTUAN NUMBERS AND THE FORBES 400

A concern with scale has been a mainstay of world literature from the Bible to Swift's
Lilliputians, from Paul Bunyan to Rabelais' Gargantua. Yet it's always struck me how
inconsistent these various authors have been in their use of large numbers.

The infant Gargantua (whence "gargantuan") is said to have needed 17,913 cows to supply him
with milk. As a young student he traveled to Paris on a mare that was as large as six elephants,
and hung the bells of Notre Dame on the mare's neck as jingles. Returning home, he was attacked
by cannon fire from a castle, and combed the cannonballs from his hair with a 900-foot-long rake.
For a salad he cut lettuces as large as walnut trees, and devoured half a dozen pilgrims who'd
hidden among the trees. Can you determine the internal inconsistencies of this story?

The book of Genesis says of the Flood that ". . . all the high hills that were under the whole
heaven were covered ..." Taken literally, this seems to indicate that there were 10,000 to 20,000
feet of water on the surface of the earth, equivalent to more than half a billion cubic miles of liquid!
Since, according to biblical accounts, it rained for forty days and forty nights, or for only 960
hours, the rain must have fallen at a rate of at least fifteen feet per hour, certainly enough to sink
any aircraft carrier, much less an ark with thousands of animals on board.

Determining internal inconsistencies such as these is one of the minor pleasures of numeracy.
The point, however, is not that one should be perpetually analyzing numbers for their consistency
and plausibility, but that, when necessary, information can be gleaned from the barest numerical
facts, and claims can often be refuted on the basis of these raw numbers alone. If people were
more capable of estimation and simple calculation, many obvious inferences would be drawn (or
not), and fewer ridiculous notions would be entertained.

Before returning to Rabelais, let's consider two hanging wires of equal cross section. (This
latter sentence, I'm sure, has never before appeared in print.) The forces on the wires are
proportional to their masses, which are proportional to their lengths. Since the areas of the
cross sections of the supporting wires are equal, the stresses in the wire, force divided by
cross-sectional area, vary as the lengths of the wires. A wire ten times as long as another will
have ten times the stress of the shorter one. Similar arguments show that, of two geometrically
similar bridges of the same material, the larger one is necessarily the weaker of the two.

Likewise, a six-foot man cannot be scaled up to thirty feet, Rabelais notwithstanding.
Multiplying his height by 5 will increase his weight by a factor of 53, while his ability to support
this weight—as measured by the cross-sectional area of his bones— will increase by a factor of
only 52. Elephants are big but at the cost of quite thick legs, while whales are relatively immune
because they're submerged in water.

Although a reasonable first step in many cases, scaling quantities up or down proportionally
is often invalid, as more mundane examples also demonstrate. If the price of bread goes up 6
percent, that's no reason to suspect the price of yachts will go up by 6 percent as well. If a
company grows to twenty times its original size, the relative proportions of its departments
will not stay the same. If ingesting a thousand grams of some substance causes one rat in one
hundred to develop cancer, that's no guarantee that ingesting just one hundred grams will cause
one rat in one thousand to develop cancer.



I once wrote to a significant minority of the Forbes 400, a list of the four hundred richest
Americans, asking for $25,000 in support for a project I was working on at the time. Since
the average wealth of the people I contacted was approximately $400 million (4 x 108, certainly
a gargantuan number of dollars) and I was asking for only l/16,000th of that wealth, I hoped
that linear proportionality would hold, reasoning that if some stranger wrote me asking for
support of a worthy project of his and asked me for $25, more than l/16,000th of my own net
worth, I would probably comply with his request. Alas, though I received a number of kind
responses, I didn't receive any money.

ARCHIMEDES AND PRACTICALLY INFINITE NUMBERS

There is a fundamental property of numbers named after the Greek mathematician
Archimedes which states that any number, no matter how huge, can be exceeded by adding
together sufficiently many of any smaller number, no matter how tiny. Though obvious in
principle, the consequences are sometimes resisted, as they were by the student of mine who
maintained that human hair just didn't grow in miles per hour. Unfortunately, the
nanoseconds used up in a simple computer operation do add up to lengthy bottlenecks on
intractable problems, many of which would require millennia to solve in general. It takes some
getting accustomed to the fact that the minuscule times and distances of microphysics as well
as the vastness of astronomical phenomena share the dimensions of our human world.

It's clear how the above property of numbers led to Archimedes' famous pronouncement that
given a fulcrum, a long enough lever, and a place to stand, he alone could physically lift the
earth. An awareness of the additivity of small quantities is lacking in innumerates, who don't
seem to believe that their little aerosol cans of hairspray could play any role in the depletion of
the ozone layer of the atmosphere, or that their individual automobile contributes anything to
the problem of acid rain.

The pyramids, impressive as they are, were built a stone at a time over a period very much
shorter than the five thousand to ten thousand years required to move the 12,000-foot Mount
Fuji by truck. A similar but more classic calculation of this type was made by Archimedes, who
estimated the number of grains of sand needed to fill up the earth and heavens. Though he
didn't have exponential notation, he invented something comparable, and his calculations
were essentially equivalent to the following.

Interpreting "the earth and heavens" to be a sphere about the earth, we observe that the
number of grains of sand needed to fill it depends on the radius of the sphere and the
coarseness of the sand. Assuming there are fifteen grains per linear inch, there are 15 x 15 per
planar inch and 153 grains per cubic inch. Since there are twelve inches per foot, there are 123

cubic inches per cubic foot and thus 153 x 123 grains per cubic foot. Similarly, there are 153 x
123 x 5,2803 grains per cubic mile. Since the formula for the volume of a sphere is 4/3 x pi x the
cube of the radius, the number of grains of sand needed to fill a sphere of radius one trillion
miles (approximately Archimedes' estimate) is 4/3 x pi x 1,000,000,000,0003 x 153 x 123 x
5,2803. This equals approximately 1054 grains of sand.



There is a sense of power connected with such calculations which is hard to explain but
which somehow involves a mental encompassing of the world. A more modern version is the
calculation of the approximate number of subatomic bits that would fill up the universe. This
number plays the role of "practical infinity" for computer problems which are solvable but
only theoretically.

The size of the universe is, to be a little generous, a sphere about 40 billion light-years in
diameter. To be even more generous and also to simplify the rough calculation, assume it's a cube
40 billion light-years on a side. Protons and neutrons are about 10-12 centimeters in diameter.
The Archimedean question computer scientist Donald Knuth poses is how many little cubes
10-13 centimeters in diameter (1/10 the diameter of these nucleons) would fit into the universe.
An easy calculation shows the number to be less than 10125. Thus, even if a computer the size of
the universe had working parts that were smaller than nucleons, it would contain fewer than
10125 such parts, and thus computations on problems which require more parts wouldn't be
possible. Perhaps surprisingly, there are many such problems, some of them quite ordinary
and of practical importance.

A comparably tiny time unit is the amount of time required for light, which travels at
300,000 kilometers per second, to traverse the length of one of the above tiny cubes, whose
edges are 10-13 centimeters. Taking the universe to be about 15 billion years old, we determine
that fewer than 1042 such time units have passed since the beginning of time. Thus, any
computer calculation which requires more than 1042 steps (each of which is certainly going to
require more time than our unit of time) requires more time than the present history of this
universe. Again, there are many such problems.

Taking a human being to be spherical and about a meter in diameter (assume a person is
squatting), we end with some biologically revealing comparisons that are somewhat easier to
visualize. The size of a human cell is to that of a person as a person's size is to that of Rhode
Island. Likewise, a virus is to a person as a person is to the earth; an atom is to a person as a
person is to the earth's orbit around the sun; and a proton is to a person as a person is to the
distance to Alpha Centauri.

THE MULTIPLICATION PRINCIPLE AND MOZART'S WALTZES

Now is probably a good time to reiterate my earlier remark that an occasional difficult
passage may be safely ignored by the innumerate reader. The next few sections in particular may
contain several such passages. The occasional trivial passage likewise may be quite safely
ignored by the numerate reader. (Indeed, the whole book may be safely ignored by all readers,
but I'd prefer that, at most, only isolated paragraphs will be.)

The so-called multiplication principle is deceptively simple and very important. It states
that if some choice can be made in M different ways and some subsequent choice can be made
in N different ways, then there are M x N different ways these choices can be made in
succession. Thus, if a woman has five blouses and three skirts, then she has 5 x 3 = 15 choices



of outfit, since each of the five blouses (Bl, B2, B3, B4, B5) can be worn with any of the three
skirts (S1, S2, S3), to yield the following fifteen outfits: B1,S1; B1,S2; B1,S3; B2,S1; B2,S2;
B2,S3; B3,S1; B3,S2; B3,S3; B4,S1; B4,S2; B4,S3; B5,S1; B5,S2; B5,S3. From a menu with
four appetizers, seven entrees, and three desserts, a diner can design 4 x 7 x 3 = 84 different
dinners, assuming he orders each course.

Likewise, the number of possible outcomes when rolling a pair of dice is 6 x 6 = 36; any of
the six numbers on the first die can be combined with any of the six numbers on the second
die. The number of possible outcomes where the second die differs from the first is 6 x 5 = 30;
any of the six numbers of the first die can be combined with any of the remaining five numbers
on the second die. The number of possible outcomes when rolling three dice is 6 x 6 x 6 = 216.
The number of outcomes in which the numbers on the three dice differ is 6 x 5 x 4 = 120.

The principle is invaluable in calculating large numbers, such as the total number of
telephones reachable without dialing an area code, which comes to roughly 8 x 106, or 8 million.
The first position can be filled by any one of eight digits (0 and 1 aren't generally used in the first
position), the second position by any one of the ten digits, and so on, up to the seventh position.
(There are actually a few more constraints on the numbers and the positions they can fill,
which brings the 8 million figure down somewhat.) Similarly, the number of possible license
plates in a state whose plates all have two letters followed by four numbers is 262 x 104. If
repetitions are not allowed, the number of possible plates is 26 x 25 x 10 x 9 x 8 x 7.

When the leaders of eight Western countries get together for the important business of a
summit meeting—having their joint picture taken—there are
8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 = 40,320 different ways in which they can be lined up.
Why? Out of these 40,320 ways, in how many would President Reagan and Prime Minister
Thatcher be standing next to each other? To answer this, assume that Reagan and Thatcher are
placed in a large burlap bag. These seven entities (the six remaining leaders and the bag) can be
lined u p i n 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5,040 ways (invoking the multiplication principle
once again). This number must then be multiplied by two since, once Reagan and Thatcher are
removed from the bag, we have a choice as to which one of the two adjacently placed leaders
should be placed first. There are thus 10,080 ways for the leaders to line up in which Reagan
and Thatcher are standing next to each other. Hence, if the leaders were randomly lined up,
the probability that these two would be standing next to each other is 10,080/ 40,320 = 1/4.

Mozart once wrote a waltz in which he specified eleven different possibilities for fourteen of
the sixteen bars of the waltz and two possibilities for one of the other bars. Thus, there are 2 x
1114 variations on the waltz, only a minuscule fraction of which have ever been heard. In a
similar vein, the French poet Raymond Queneau once published a book entitled Cent mille
milliards de poèmes, which consisted of a sonnet on each of ten pages. The pages were cut to
allow each of the fourteen lines of each sonnet to be turned separately, so that any of the ten
first lines could be combined with any of the ten second lines, and so on. Queneau claimed that
all the resulting 1014 sonnets made sense, although it's safe to say that the claim will never be
verified.

People don't generally appreciate how large such seemingly tidy collections can be. A
sports-writer once recommended in print that a baseball manager should play every possible
combination of his twenty-five-member team for one game to find the nine that play best



together. There are various ways to interpret this suggestion, but in all of them the number of
games is so large that the players would be long dead before the games were completed.

TRIPLE-SCOOP CONES AND VON NEUMANN'S TRICK

Baskin-Robbins ice-cream parlors advertise thirty-one different flavors of ice cream. The
number of possible triple-scoop cones without any repetition of flavors is therefore 31 x 30 x
29 = 26,970; any of the thirty-one flavors can be on top, any of the remaining thirty in the
middle, and any of the remaining twenty-nine on the bottom. If we're not interested in how the
flavors are arranged on the cone but merely in how many three-flavored cones there are, we
divide 26,970 by 6, to get 4,495 cones. The reason we divide by 6 is that there are 6 = 3 x 2
x 1 different ways to arrange the three flavors in, say, a strawberry-vanilla-chocolate cone:
SVC, SCV, VSC, VCS, CVS, and CSV. Since the same can be said for any three-flavored cone,
the number of such cones is (31 x 30 x 29)/(3 x 2 x 1) = 4,495.

A less fattening example is provided by the many state lotteries which require the winner
to choose six numbers out of a possible forty. If we're concerned with the order in which these
six numbers are chosen, then there are (40 x 39 x 38 x 37 x 36 x 35) = 2,763,633,600
ways of choosing them. If, however, we are interested only in the six numbers as a
collection (as we are in the case of the lotteries) and not in the order in which they are
chosen, then we divide 2,763,633,600 by 720 to determine the number of such collections:
3,838,380. The division is necessary since there are 720 = 6 x 5 x 4 x 3 x 2 x 1 ways to
arrange the six numbers in any collection.

Another example, and one of considerable importance to card players, is the number of
possible five-card poker hands. There are 52 x 51 x 50 x 49 x 48 possible ways to be
dealt five cards if the order of the cards dealt is relevant. Since it's not, we divide the
product by (5 x 4 x 3 x 2 x 1), and find that there are 2,598,960 possible hands. Once that
number is known, several useful probabilities can be computed. The chances of being dealt
four aces, for example, is 48/2,598,960 (= about 1 in 50,000), since there are forty-eight
possible ways of being dealt a hand with four aces corresponding to the forty-eight cards
which could be the fifth card in such a hand.

Note that the form of the number obtained is the same in all three examples: (32 x 30
x 29)/ ( 3 x 2 x 1 ) different three-flavored ice-cream cones; (40 x 39 x 38 x 37 x 36 x
35) /(6 x 5 x 4 x 3 x 2 x 1) different ways to choose six numbers out of forty; and (52 x
51 x 50 x 49 x 48)/(5 x 4 x 3 x 2 x 1 ) different poker hands. Numbers obtained in this way
are called combinatorial coefficients. They arise when we're interested in the number of
ways of choosing R elements out of N elements and we're not interested in the order of the R
elements chosen.

An analogue of the multiplication principle can be used to calculate probabilities. If two
events are independent in the sense that the outcome of one event has no influence on the



outcome of the other, then the probability that they both occur is computed by multiplying the
probabilities of the individual events.

For example, the probability of obtaining two heads in two flips of a coin is 1/2 x 1/2 = 1/4
since of the four equally likely possibilities—tail,tail; tail,head; head,tail; head,head—one
is a pair of heads. For the same reason, the probability of five straight coin flips resulting in
heads is (1/2)5 = 1/32 since one of the thirty-two equally likely possibilities is five consecutive
heads.

Since the probability that a roulette wheel will stop on red is 18/38, and since spins of a roulette
wheel are independent, the probability the wheel will stop on red for five consecutive spins is
(18/38)5 (or .024 -2.4%). Similarly, given that the probability that someone chosen at random
was not born in July is 11/12, and given that people's birthdays are independent, the probability
that none of twelve randomly selected people was born in July is (11/12)12 (or .352 - 35.2%).
Independence of events is a very important notion in probability, and when it holds, the
multiplication principle considerably simplifies our calculations.

One of the earliest problems in probability was suggested to the French mathematician and
philosopher Pascal by the gambler Antoine Gombaud, Chevalier de Mere. De Mere wished to
know which event was more likely: obtaining at least one 6 in four rolls of a single die, or
obtaining at least one 12 in twenty-four rolls of a pair of dice. The multiplication principle for
probabilities is sufficient to determine the answer if we remember that the probability that an
event doesn't occur is equal to 1 minus the probability that it does (a 20 percent chance of
rain implies an 80 percent chance of no rain).

Since 5/6 is the probability of not rolling a 6 on a single roll of a die, (5/6)4 is the probability
of not rolling a 6 in four rolls of the die. Hence, subtracting this number from 1 gives us the
probability that this latter event (no 6s) doesn't occur; in other words, of there being at least
one 6 rolled in the four tries: 1 - (5/6)4 = .52. Likewise, the probability of rolling at least one
12 in twenty-four rolls of a pair of dice is seen to be 1 - (35/

36)24 = .49.
A more contemporary instance of the same sort of calculation involves the likelihood of

acquiring AIDS heterosexually. It's estimated that the chance of contracting AIDS in a single
unprotected heterosexual episode from a partner known to have the disease is about one in five
hundred (the average of the figures from a number of studies). Thus, the probability of not getting
it from a single such encounter is 499/500. If these risks are independent, as many assume
them to be, then the chances of not falling victim after two such encounters is (499/500)2, and
after N such encounters (499/500)N. Since (499/ 500)346 is 1/2 one runs about a 50 percent chance
of not contracting AIDS by having unsafe heterosexual intercourse every day for a year with
someone who has the disease (and thus, equivalently, a 50 percent chance of contracting it).

With a condom the risk of being infected from a single unsafe heterosexual episode with
someone known to have the disease falls to one in five thousand, and safe sex every day for ten
years with such a person (assuming the victim's survival) would lead to a 50 percent chance of
getting the disease yourself. If your partner's disease status is not known, but he or she is not a
member of any known risk group, the chance per episode of contracting the infection is one in
five million unprotected, one in fifty million with a condom. You're more likely to die in a car
crash on the way home from such a tryst.



Two opposing parties often decide an outcome by the flip of a coin. One or both of the
parties may suspect the coin is biased. A cute little trick utilizing the multiplication principle
was devised by mathematician John von Neumann to allow the contestants to use the biased
coin and still get fair results.

The coin is flipped twice. If it comes up heads both times or tails both times, it is flipped
twice again. If it comes up heads-tails, this will decide the outcome in favor of the first party,
and if it comes up tails-heads, this will decide the outcome in favor of the second party. The
probabilities of both these outcomes are the same even if the coin is biased. For example, if the
coin lands heads 60 percent of the time and tails 40 percent of the time, a heads-tails
sequence has probability .6 x .4 = .24 and a tails-heads sequence has probability .4 x .6 = .24.
Thus, both parties can be confident of the fairness of the outcome despite the possible bias of
the coin (unless it is crooked in some different way).

An important bit of background intimately connected to the multiplication principle and
combinatorial coefficients is the binomial probability distribution. It arises whenever a
procedure or trial may result in "success" or "failure" and one is interested in the probability of
obtaining R successes in N trials. If 20 percent of all sodas dispensed by a vending machine
overflow their cups, what is the probability that exactly three of the next ten will overflow? at
most, three? If a family has five children, what is the probability that they will have exactly
three girls? at least, three? If one-tenth of all people have a certain blood type, what is the
probability that, of the next hundred people we randomly select, exactly eight will have the
blood type in question? at most, eight?

Let me derive the answer to the questions about the vending machine, 20 percent of whose
sodas overflow their cups. The probability that the first three sodas overflow and the next
seven do not is, by the multiplication principle for probability, (.2)3 x (.8)7. But there are many
different ways for exactly three of the ten cups to overflow, each way having probability (.2)3 x
(.8)7. It may be that only the last three cups overflow, or only the fourth, fifth, and ninth cups,
and so on. Thus, since there are altogether (10 x 9 x 8)/(3 x 2 x 1) = 120 ways for us to pick
three out of the ten cups (combinatorial coefficient), the probability of some collection of exactly
three cups overflowing is 120 x (.2)3 x (.8)7.

The probability of at most three cups overflowing is determined by finding the probability
of exactly three cups overflowing, which we've done, and adding to it the probabilities of exactly
two, one, and zero cups overflowing, which can be determined in a similar way. Happily, there
are tables and good approximations which can be used to shorten these calculations.



JULIUS CAESAR AND YOU

Two final applications of the multiplication principle—one slightly depressing, the other
somewhat cheering. The first is the probability of not being afflicted with any of a variety of
diseases, accidents, or other misfortunes. Not being killed in a car accident may be 99 percent
certain, while 98 percent of us may avoid perishing in a household accident. Our chances of
escaping lung disease may be 95 percent; dementia, 90 percent; cancer, 80 percent; and heart
disease, 75 percent. These figures are merely for illustration, but accurate estimates may be
made for a wide range of dire possibilities. While the chances of avoiding any particular
disease or accident may be encouraging, the probability of avoiding them all is not. If we
multiply all the above probabilities (assuming these calamities are largely independent), the
product grows disturbingly small quite quickly: already our chance of not suffering any of the
few misfortunes listed above is less than 50 percent. It's a little anxiety-provoking, how this
innocuous multiplication principle can make our mortality more vivid.

Now for better news of a kind of immortal persistence. First, take a deep breath. Assume
Shakespeare's account is accurate and Julius Caesar gasped "You too, Brutus" before
breathing his last. What are the chances you just inhaled a molecule which Caesar exhaled in
his dying breath? The surprising answer is that, with probability better than 99 percent, you
did just inhale such a molecule.

For those who don't believe me: I'm assuming that after more than two thousand years the
exhaled molecules are uniformly spread about the world and the vast majority are still free in
the atmosphere. Given these reasonably valid assumptions, the problem of determining the
relevant probability is straightforward. If there are N molecules of air in the world and Caesar
exhaled A of them, then the probability that any given molecule you inhale is from Caesar is
A/N. The probability that any given molecule you inhale is not from Caesar is thus 1 -A/N. By
the multiplication principle, if you inhale three molecules, the probability that none of these
three is from Caesar is [1 - A/N]3. Similarly, if you inhale B molecules, the probability that none
of them is from Caesar is approximately [1 - A/N]B. Hence, the probability of the
complementary event, of your inhaling at least one of his exhaled molecules, is 1 - [1 -
A/N]B. A, B (each about l/30th of a mole, or 2.2 x 1022), and N (about 1044 molecules) are such
that this probability is more than .99. It's intriguing that we're all, at least in this minimal
sense, eventually part of one another.



2 Probability and Coincidence

It is no great wonder if, in the long process of time, while fortune takes her course
hither and thither, numerous coincidences should spontaneously occur. —Plutarch

"You're a Capricorn, too. That's so exciting."

A man who travels a lot was concerned about the possibility of a bomb on board his plane.
He determined the probability of this, found it to be low but not low enough for him, so now he
always travels with a bomb in his suitcase. He reasons that the probability of two bombs
being on board would be infinitesimal.

SOME BIRTHDAY VS. A PARTICULAR BIRTHDAY

Sigmund Freud once remarked that there was no such thing as a coincidence. Carl Jung
talked about the mysteries of synchronicity. People in general prattle ceaselessly about
ironies here and ironies there. Whether we call them coincidences, synchronicities, or ironies,
however, these occurrences are much more common than most people realize.

Some representative examples: "Oh, my brother-in-law went to school there, too, and my
friend's son cuts the principal's lawn, and my neighbor's daughter knows a girl who once was
a cheerleader for the school." — "There've been five instances of the fish idea since this
morning when she told me of her fears about his fishing on the open lake. Fish for lunch, the
fish motif on Caroline's dress, the .. ." — Christopher Columbus discovered the New World in
1492 and his fellow Italian Enrico Fermi discovered the new world of the atom in 1942. — "You
said you wanted to keep up with him, but later you said you wanted to keep abreast of her. It's
clear what's on your mind." —The ratio of the height of the Sears Building in Chicago to the
height of the Woolworth Building in New York is the same to four significant digits (1.816 vs.
1816) as the ratio of the mass of a proton to the mass of an electron. —The Reagan-Gorbachev
INF treaty was signed on December 8, 1987, exactly seven years after John Lennon was killed.

A tendency to drastically underestimate the frequency of coincidences is a prime characteristic
of innumerates, who generally accord great significance to correspondences of all sorts while
attributing too little significance to quite conclusive but less flashy statistical evidence. If they



anticipate someone else's thought, or have a dream that seems to come true, or read that, say,
President Kennedy's secretary was named Lincoln while President Lincoln's secretary was named
Kennedy, this is considered proof of some wondrous but mysterious harmony that somehow holds
in their personal universe. Few experiences are more dispiriting to me than meeting someone
who seems intelligent and open to the world but who immediately inquires about my zodiac sign
and then begins to note characteristics of my personality consistent with that sign (whatever sign
I give them).

The surprising likelihood of coincidence is illustrated by the following well-known result in
probability. Since a year has 366 days (if you count February 29), there would have to be 367
people gathered together in order for us to be absolutely certain that at least two people in the
group have the same birthday. Why?

Now, what if we were content to be just 50 percent certain of this? How many people would
there have to be in a group in order for the probability to be half that at least two people in it have
the same birthday? An initial guess might be 183, about half of 365. The surprising answer is that
there need be only twenty-three. Stated differently, fully half of the time that twenty-three
randomly selected people are gathered together, two or more of them will share a birthday.

For readers unwilling to accept this on faith, here is a brief derivation. By the
multiplication principle, the number of ways in which five dates can be chosen (allowing for
repetitions) is (365 x 365 x 365 x 365 x 365). Of all these 3655 ways, however, only (365 x 364
x 363 x 362 x 361) are such that no two of the dates are the same; any of the 365 days can be
chosen first, any of the remaining 364 can be chosen second, and so on. Thus, by dividing this
latter product (365 x 364 x 363 x 362 x 361) by3655, we get the probability that five people
chosen at random will have no birthday in common. Now, if we subtract this probability from 1
(or from 100 percent if we're dealing in percentages), we get the complementary probability that
at least two of the five people do have a birthday in common. A similar calculation using 23
rather than 5 yields 1/2, or 50 percent, as the probability that at least two of twenty-three
people will have a common birthday.

A couple of years ago, someone on the Johnny Carson show was trying to explain this.
Johnny Carson didn't believe it, noted that there were about 120 people in the studio audience,
and asked how many of them shared his birthday of, say, March 19. No one did, and the guest,
who wasn't a mathematician, said something incomprehensible in his defense. What he should
have said is that it takes twenty-three people to be 50 percent certain that there is some
birthday in common, not any particular birthday such as March 19. It requires a large number of
people, 253 to be exact, to be 50 percent certain that someone in the group has March 19 as his
or her birthday.

A brief derivation of the last fact: Since the probability of someone's birthday not being
March 19 is 364/365, and since birthdays are independent, the probability of two people not
having March 19 as a birthday is 364/365 x 364/365. Thus, the probability of N people not
having March 19 as a birthday is (364/365)N, which, when N = 253, is approximately 1/2. Hence,
the complementary probability that at least one of these 253 people was born on March 19 is
also 1/2, or 50 percent.

The moral, again, is that some unlikely event is likely to occur, whereas it's much less
likely that a particular one will. Martin Gardner, the mathematics writer, illustrates the



distinction between general and specific occurrences by means of a spinner with the twenty-six
letters of the alphabet on it. If the spinner is spun one hundred times and the letters recorded,
the probability that the word cat or warm will appear is very small, but the probability of
some word's appearing is high. Since I brought up the topic of astrology, Gardner's examples
of the first letters of the names of the months and the planets are particularly appropriate.
The months—JFMAMJJASOND—give us jason; the planets—MVEMJSUNP—spell sun.
Significant? No.

The paradoxical conclusion is that it would be very unlikely for unlikely events not to occur.
If you don't specify a predicted event precisely, there are an indeterminate number of ways for
an event of that general kind to take place.

Medical quackery and television evangelism will be discussed in the next chapter, but it
should be mentioned here that their predictions are usually sufficiently vague so that the
probability of some event of the predicted kind occurring is very high; it's the particular
predictions that seldom come true. That some nationally famous politician will undergo a
sex-change operation, as a newspaper astrologer-psychic recently predicted, is considerably more
likely than that New York's Mayor Koch will. That some viewer will be relieved of his gastric pains
just as a television evangelist calls out the symptoms is considerably more likely than that a
particular viewer will be. Likewise, insurance policies with broad coverage which compensates
for any mishap are apt to be cheaper in the long run than insurance for a particular disease or a
particular trip.

CHANCE ENCOUNTERS

Two strangers from opposite sides of the United States sit next to each other on a business trip
to Milwaukee and discover that the wife of one of them was in the tennis camp run by an
acquaintance of the other's. This sort of coincidence is surprisingly common. If we assume each of
the approximately 200 million adults in the United States knows about 1,500 people, and that
these 1,500 people are reasonably spread out around the country, then the probability is about
one in a hundred that they will have an acquaintance in common, and more than ninety-nine in
a hundred that they will be linked by a chain of two intermediates.

We can be almost certain, then, given these assumptions, that two people chosen at
random will be linked, as were the strangers on the business trip, by a chain of at most two
intermediates. Whether they'll run down the 1,500 or so people they each know (as well as the
acquaintances of each of these 1,500) during their conversation and thus become aware of the
two intermediates linking them is another, more dubious matter.

These assumptions can be relaxed somewhat. Maybe the average adult knows fewer than
1,500 other adults, or, more likely, most of the people he or she does know live close by and
are not spread about the country. Even in these cases, however, the probability of two randomly
selected people being linked by two intermediates is unexpectedly high.



A more empirical approach to coincidental meetings was taken by psychologist Stanley
Milgrim, who gave each member of a randomly selected group of people a document and a
(different) "target individual" to whom the document was to be transmitted. The directions were
that each person was to send the document to the person he knew who was most likely to know
the target individual, and that he was to direct that person to do the same, until the target
individual was reached. Milgrim found that the number of intermediate links ranged from two
to ten, with five being the most common number. This study is more impressive, even if less
spectacular, than the earlier a priori probability argument. It goes some way toward explaining
how confidential information, rumors, and jokes percolate so rapidly through a population.

If the target is well known, the number of intermediates is even smaller, especially if you
have a link with one or two celebrities. How many intermediates are there between you and
President Reagan? Say the number is N. Then the number of intermediates between you and
Secretary General Gorbachev is less than or equal to (N + 1), since Reagan has met Gorbachev.
How many intermediates between you and Elvis Presley? Again, it can't be bigger than (N + 2),
since Reagan's met Nixon, who's met Presley. Most people are surprised when they realize how
short the chain is which links them to almost any celebrity.

When I was a freshman in college, I wrote a letter to English philosopher and mathematician
Bertrand Russell telling him that he'd been an idol of mine since junior high school and asking
him about something he'd written concerning the German philosopher Hegel's theory of logic. Not
only did he answer my letter, but he included his response in his autobiography, sandwiched
between letters to Nehru, Khrushchev, T. S. Eliot, D. H. Lawrence, Ludwig Wittgenstein, and
other luminaries. I like to maintain that the number of intermediates linking me to these
historical figures is one: Russell.

Another problem in probability illustrates how common coincidences may be in another context.
The problem's often phrased in terms of a large number of men who check their hats at a
restaurant, whereupon the attendant promptly scrambles the hat-check numbers randomly. What
is the probability that at least one of the men will get his own hat upon leaving? It's natural to
think that if the number of men is very large, this probability should be quite small. Surprisingly,
about 63 percent of the time, at least one man will get his own hat back.

Put another way: If a thousand addressed envelopes and a thousand addressed letters are
thoroughly scrambled and one letter is then placed into each envelope, the probability is likewise
about 63 percent that at least one letter will find its way into its corresponding envelope. Or take
two thoroughly shuffled decks of cards. If cards from each of these decks are turned over one at a
time in tandem, what is the probability that at least one exact match will occur? Again, about 63
percent. (Peripheral question: Why is it necessary to shuffle only one of the decks thoroughly?)

A very simple numerical principle that's sometimes of use in accounting for the certainty of a
particular kind of coincidence is illustrated by the mailman who has twenty-one letters to
distribute among twenty mailboxes. Since 21 is greater than 20, he can be sure, even without
looking at the addresses, that at least one mailbox will get more than one letter. This bit of
common sense, sometimes termed the pigeonhole or Dirichlet drawer principle, can occasionally be
used to derive claims that are not so obvious.

We invoked it in stating that if we had 367 people gathered together, we could be certain that
at least two had the same birthday. A more interesting fact is that at least two people living in



Philadelphia must have the same number of hairs on their heads. Consider the numbers up to
500,000, a figure that's generally taken to be an upper bound for the number of hairs on any human
head, and imagine these numbers to be the labels on half a million mailboxes. Imagine further that
each of the 2.2 million Philadelphians is a letter to be delivered to the mailbox whose label
corresponds to the number of hairs on his or her head. Thus, if Mayor Wilson Goode has 223,569
hairs on his head, then he is to be delivered to the mailbox with that number.

Since 2,200,000 is considerably more than 500,000, we can be certain that at least two people
have the same number of hairs on their heads; i.e., that some mailbox will receive at least two
Philadelphians. (Actually, we can be sure that at least five Philadelphians have the same number
of hairs on their heads. Why?)

A STOCK-MARKET SCAM

Stock-market advisers are everywhere, and you can probably find one to say almost anything
you might want to hear. They're usually assertive, sound quite authoritative, and speak a strange
language of puts, calls, Ginnie Maes, and zero-coupons. In my humble experience, most don't really
know what they're talking about, but presumably some do.

If from some stock-market adviser you received in the mail for six weeks in a row correct
predictions on a certain stock index and were asked to pay for the seventh such prediction, would
you? Assume you really are interested in making an investment of some sort, and assume further
that the question is being posed to you before the stock crash of October 19, 1987. If you would
be willing to pay for the seventh prediction (or even if you wouldn't), consider the following
con game.

Some would-be adviser puts a logo on some fancy stationery and sends out 32,000 letters to
potential investors in a stock index. The letters tell of his company's elaborate computer
model, his financial expertise and inside contacts. In 16,000 of these letters he predicts the
index will rise, and in the other 16,000 he predicts a decline. No matter whether the index rises
or falls, a follow-up letter is sent, but only to the 16,000 people who initially received a correct
"prediction." To 8,000 of them, a rise is predicted for the next week; to the other 8,000, a decline.
Whatever happens now, 8,000 people will have received two correct predictions. Again, to these
8,000 people only, letters are sent concerning the index's performance the following week:
4,000 predicting a rise; 4,000, a decline. Whatever the outcome, 4,000 people have now received
three straight correct predictions.

This is iterated a few more times, until 500 people have received six straight correct
"predictions." These 500 people are now reminded of this and told that in order to continue to
receive this valuable information for the seventh week they must each contribute $500. If they
all pay, that's $250,000 for our adviser. If this is done knowingly and with intent to defraud, this
is an illegal con game. Yet it's considered acceptable if it's done unknowingly by earnest but
ignorant publishers of stock newsletters, or by practitioners of quack medicine, or by television



evangelists. There's always enough random success to justify almost anything to someone who
wants to believe.

There is another quite different problem exemplified by these stock-market forecasts and
fanciful explanations of success. Since they're quite varied in format and often incomparable
and very numerous, people can't act on all of them. The people who try their luck and don't fare
well will generally be quiet about their experiences. But there'll always be some people who will
do extremely well, and they will loudly swear to the efficacy of whatever system they've used.
Other people will soon follow suit, and a fad will be born and thrive for a while despite its
baselessness.

There is a strong general tendency to filter out the bad and the failed and to focus on the
good and the successful. Casinos encourage this tendency by making sure that every quarter
that's won in a slot machine causes lights to blink and makes its own little tinkle in the metal
tray. Seeing all the lights and hearing all the tinkles, it's not hard to get the impression that
everyone's winning. Losses or failures are silent. The same applies to well-publicized
stock-market killings vs. relatively invisible stock-market ruinations, and to the faith healer
who takes credit for any accidental improvement but will deny responsibility if, for example, he
ministers to a blind man who then becomes lame.

This filtering phenomenon is very widespread and manifests itself in many ways. Along
almost any dimension one cares to choose, the average value of a large collection of
measurements is about the same as the average value of a small collection, whereas the extreme
value of a large collection is considerably more extreme than that of a small collection. For
example, the average water level of a given river over a twenty-five-year period will be
approximately the same as the average water level over a one-year period, but the worst flood over a
twenty-five-year period is apt to be considerably higher than that over a one-year period. The
average scientist in tiny Belgium will be comparable to the average scientist in the United States,
even though the best scientist in the United States will in general be better than Belgium's best (we
ignore obvious complicating factors and definitional problems).

So what? Because people usually focus upon winners and extremes whether they be in sports,
the arts, or the sciences, there's always a tendency to denigrate today's sports figures, artists, and
scientists by comparing them with extraordinary cases. A related consequence is that
international news is usually worse than national news, which in turn is usually worse than state
news, which is worse than local news, which is worse than the news in your particular
neighborhood. Local survivors of tragedy are invariably quoted on TV as saying something like,
"I can't understand it. Nothing like that has ever happened around here before."

One final manifestation: Before the advent of radio, TV, and film, musicians, athletes, etc.,
could develop loyal local audiences since they were the best that most of these people would ever
see. Now audiences, even in rural areas, are no longer as satisfied with local entertainers and
demand world-class talent. In this sense, these media have been good for audiences and bad
for performers.



EXPECTED VALUES: FROM BLOOD TESTING TO CHUCK-A-LUCK

Coincidences or extreme values catch the eye, but average or "expected" values are
generally more informative. The expected value of a quantity is simply the average of its values
weighted according to their probabilities. For example, if 1/4 of the time a quantity equals 2, 1/3
of the time it equals 6, another 1/3 of the time it equals 15, and the remaining 1/12 of the time it
equals 54, then its expected value equals 12. This is so since [12 = (2 x 1/4) + (6 x 1/3) + (15 x
1/3) + (54 x 1/12)].

As a simple illustration, consider a home-insurance company. Assume it has good reason to
believe that, on average, each year one out of every 10,000 of its policies will result in a claim
of $200,000; one out of 1,000 policies will result in a claim of $50,000; one out of 50 will result
in a claim of $2,000; and the remainder will result in a claim of $0. The insurance company
would like to know what its average payout is per policy written. The answer is the expected
value, which in this case is ($200,000 x 1/10,000) + ($50,000 x 1/1,000) + ($2,000 x 1/50) +
($0 x 9,789/10,000) = $20 + $50 + $40 = $110.

The expected payout on a slot machine is determined in like manner. Each payout is
multiplied by the probability of its occurring, and these products are then summed up to give
the average or expected payout. For example, if cherries on all three dials result in a payout
of $80 and the probability of this is (1/20)3 (assume there are twenty entries on each dial, only
one of which is a cherry), we multiply $80 by (1/20)3 and then add to this product the products
of the other payouts (a loss being considered a negative payout) and their probabilities.

An illustration which isn't quite so vanilla: Assume a medical clinic tests blood for a
certain disease from which approximately one person in a hundred suffers. People come to
the clinic in groups of fifty, and the director wonders whether, instead of testing them
individually, he should pool the fifty samples and test them all together. If the pooled
sample is negative, he could pronounce the whole group healthy, and if not, he could then
test each person individually. What is the expected number of tests the director will have to
perform if he pools the blood samples?

The director will have to perform either one test (if the pooled sample is negative) or
fifty-one tests (if it's positive). The probability that any one person is healthy is 99/100, and so
the probability that all fifty people are healthy is (99/100)50. Thus, the probability that he'll have
to perform just one test is (99/100)50. On the other hand, the probability that at least one
person suffers from the disease is the complementary probability [1 - (99/100)50], and so the
probability of having to perform fifty-one tests is [1 - (99/100)50]. Thus, the expected number of
tests necessary is (1 test x (99/100)50) + (51 tests x [1 - (99/100)50]) - approximately 21 tests.

If there are large numbers of people having the blood test, the medical director would be
wise to take part of each sample, pool it, and test this pooled sample first. If necessary, he
could then test the remainders of each of the fifty samples individually. On average, this would
require only twenty-one tests to test fifty people.

An understanding of expected values is helpful in analyzing most casino games, as well as
the lesser-known game of chuck-a-luck which is played at carnivals in the Midwest and
England.



The spiel that goes with chuck-a-luck can be very persuasive. You pick a number from 1 to
6 and the operator rolls three dice. If the number you pick comes up on all three dice, the
operator pays you $3; if it comes up on two of the three dice, he pays you $2; and if it comes up
on just one of the three dice, he pays you $1. Only if the number you picked doesn't come up
at all do you pay him anything— just $1. With three different dice, you have three chances to
win, and furthermore you'll sometimes win more than $1, while that is your maximum loss.

As Joan Rivers might say, "Can we calculate?" (If you'd rather not calculate, skip to the
end of this section.) The probability of your winning is clearly the same no matter what number
you choose, so, to make the calculation specific, assume you always pick the number 4. Since
the dice are independent, your chances that a 4 will come up on all three dice are 1/6 x 1/6 x 1/6 =
1/216 so, approximately 1/216th of the time you'll win $3.

Your chances of a 4 coming up only twice are a little harder to calculate unless you use the
binomial probability distribution mentioned in Chapter 1, which I'll derive again in this
context. A 4 coming up on two of the three dice can happen in three different and mutually
exclusive ways: X44, 4X4, or 44X, the X indicating a non-4. The probability of the first is 5/6
x 1/6 x 1/6 = 5/216, a result which holds true for the second and third ways as well. Adding,
we find that the probability of a 4 coming up on two of the three dice is 15/216, which is the
fraction of the time you'll win $2.

The probability of obtaining exactly one 4 among the three dice is likewise
determined by breaking the event into the three mutually exclusive ways it can happen. The
probability of obtaining 4XX is 1/6 x 5/6 x 5/6 = 25/216, which is also the probability of obtaining
X4X and XX4. Adding, we get 75/216 for the probability of exactly one 4 coming up on the
three dice, and hence for the probability of your winning $1. To find the probability that no
4s come up when we roll three dice, we find how much probability is left over. That is, we
subtract (1/216 + 15/216 + 75/216) from 1 (or 100%) to get 125/216. Thus, on the average, 125 out of
216 times you play chuck-a-luck, you'll lose $1.

The expected value of your winnings is thus ($3 x 1/216) + ($2 x 15/216) + ($1 x 75/216) + (-$1 x
125/216) = $( - 17/216) = - $.08, and so, on the average, you would lose approximately eight cents
every time you played this seemingly attractive game.

CHOOSING A SPOUSE

There are two approaches to love—through the heart and through the head. Neither one
seems to work very well alone, but together ... they still don't work too well. Nevertheless,
there's probably a better chance of success if both are used. Upon thinking of past loves, someone
who approaches romance through the heart is likely to bemoan lost opportunities and conclude
that he or she will never again love as deeply. Someone who takes a more hard-headed
approach may be interested in the following result in probability.

The model we'll consider assumes that our heroine—call her Myrtle—has reason to believe
that she'll meet N potential spouses (spice?) during her "dating life." N could be two for some



women, two hundred for others. The question Myrtle poses to herself is: When should I accept
Mr. X and forgo the suitors who would come after him, some of whom may possibly be "better"
than he? We'll assume she meets men sequentially, can judge the relative suitability for her of
those she's met, and once she's rejected someone, he's gone forever.

For illustration, suppose Myrtle has met six men so far and that she rates them as follows: 3
5 1 6 2 4. That is, of the six men she's met, she liked the first one she met third-best, the second
one she liked fifth-best, the third one she liked best of all, and so on. If the seventh man she
meets she prefers to everyone except her favorite, her updated ranking would become: 4 6 1 7
3 5 2. After each man, she updates her relative ranking of her suitors and wonders what rule
she should follow in order to maximize her chances of choosing the best of her projected N
suitors.

The derivation of the best policy uses the idea of conditional probability (which we'll
introduce in the next chapter) and a little calculus. The policy itself, though, is quite simple to
describe. Call a suitor a heartthrob if he's better than all previous candidates. Myrtle should
reject approximately the first 37 percent of the N candidates she's likely to meet, and then accept
the first suitor after that (if any) who is a heartthrob.

For instance, suppose Myrtle isn't overly attractive and is likely to meet only four eligible
suitors, and suppose further that these four men are equally likely to come to her in any of the
twenty-four possible orderings (24 = 4 x 3 x 2 x 1).

Since 37 percent is between 25 percent and 50 percent, the policy is ambiguous here, but the
two best strategies correspond to the following: (A) Pass up the first candidate (25 percent of N =
4) and accept the first heartthrob after that. (B) Pass up the first two candidates (50 percent of N
= 4) and accept the first heartthrob after that. Strategy A will result in Myrtle's choosing the
best suitor in eleven of the twenty-four instances, while strategy B will result in success in ten of
the twenty-four instances.

The list of all such sequential orderings is below, with the number 1 representing, as before, the
suitor Myrtle would most prefer, 2 her second choice, etc. Thus, the ordering 3 2 1 4 indicates
that she meets her third choice first, her second choice second, her first choice she meets third, and
her last choice last. The orderings are marked with an A or a B to indicate in which instances
these strategies result in her getting her first choice.

1234 • 1243 • 1324 • 1342 • 1423 • 1432 • 2134(A) • 2143(A) • 2314(A,B) • 2341(A,B) •
2413(A,B) • 2431(A,B) • 3124(A) • 3142(A) • 3214(B) • 3241(B) • 3412(A,B) • 3421 • 4123(A) •
4132(A) • 4213(B) • 423KB) • 4312(B) • 4321

If Myrtle is quite attractive and can expect to have twenty-five suitors, her best
strategy would still be to reject the first nine of these suitors (37 percent of 25) and then
accept the first heartthrob after that. This could be verified by tabulation, as above, but the
tables get unwieldy and it's best to accept the general proof. (Needless to say, the same
analysis holds if the person seeking a spouse is a Mortimer and not a Myrtle.)

For large values of N, the probability that Myrtle will find her Mr. Right following this
37 percent rule is also approximately 37 percent. Then comes the hard part: living with Mr.
Right. Variants of the model exist with more romantically plausible constraints.



COINCIDENCE AND THE LAW

In 1964 in Los Angeles a blond woman with a ponytail snatched a purse from another
woman. The thief fled on foot but was later spotted entering a yellow car driven by a black
man with a beard and a mustache. Police investigation eventually discovered a blond
woman with a ponytail who regularly associated with a bearded and mustachioed black
man who owned a yellow car. There wasn't any hard evidence linking the couple to the crime,
or any witnesses able to identify either party. There was, however, agreement on the above
facts.

The prosecutor argued that the probability was so low that such a couple existed that the
police investigation must have turned up the actual culprits. He assigned the following
probabilities to the characteristics in question: yellow car—1/10; man with a mustache—1/4;
woman with a ponytail— 1/10; woman with blond hair—1/3; black man with a beard—1/10;
interracial couple in a car—1/1,000. The prosecutor further argued that the characteristics
were independent, so that the probability that a randomly selected couple would have all of
them would be 1/10 x 1/4 x 1/10 x 1/3 x 1/10 x 1/1,000 = 1/12,000,000, a number so low the
couple must be guilty. The jury convicted them.

The case was appealed to the California supreme court, where it was overturned on the basis
of another probability argument. The defense attorney in that trial argued that 1/12,000,000
was not the relevant probability. In a city the size of Los Angeles, with maybe 2,000,000
couples, the probability was not that small, he maintained, that there existed more than one
couple with that particular list of characteristics, given that there was at least one such
couple—the convicted couple. On the basis of the binomial probability distribution and the
1/12,000,000 figure, this probability can be determined to be about 8 percent—small, but
certainly allowing for reasonable doubt. The California supreme court agreed and overturned
the earlier guilty verdict.

Whatever the problems of the one in 12,000,000 figure, rarity by itself shouldn't necessarily be
evidence of anything. When one is dealt a bridge hand of thirteen cards, the probability of being
dealt that particular hand is less than one in 600 billion. Still, it would be absurd for someone to
be dealt a hand, examine it carefully, calculate that the probability of getting it is less than one in
600 billion, and then conclude that he must not have been dealt that very hand because it is so
very improbable.

In some contexts, improbabilities are to be expected. Every bridge hand is quite improbable.
Likewise with poker hands or lottery tickets. In the case of the California couple, improbability
carries more weight, but still, their defense attorney's argument was the right one.

Why is it, incidentally, if all the 3,838,380 ways of choosing six numbers out of forty are
equally likely, that a lottery ticket with the numbers 2 13 17 20 29 36 is for most people
much preferable to one with the numbers 1 2 3 4 5 6? This is, I think, a fairly deep question.

The following sports anomaly has legal implications as well. Consider two baseball players,
say, Babe Ruth and Lou Gehrig. During the first half of the season, Babe Ruth hits for a higher
batting average than Lou Gehrig. And during the second half of the season, Babe Ruth again hits
for a higher average than Lou Gehrig. But for the season as whole, Lou Gehrig has a higher



batting average than Babe Ruth. Could this be the case? Of course, the mere fact that I pose the
question may cause some misgivings, but at first glance such a situation seems impossible.

What can happen is that Babe Ruth could hit .300 the first half of the season and Lou Gehrig
only .290, but Ruth could bat two hundred times to Gehrig's one hundred times. During the second
half of the season, Ruth could bat .400 and Gehrig only .390, but Ruth could come to bat only a
hundred times to Gehrig's two hundred times at bat. The result would be a higher overall batting
average for Gehrig than for Ruth: .357 vs. .333. You can't average batting averages.

There was an intriguing discrimination case in California several years ago which had the
same formal structure as this batting-average puzzle. Looking at the proportion of women in
graduate school at a large university, some women filed a lawsuit claiming that they were being
discriminated against by the graduate school. When administrators sought to determine which
departments were most guilty, they found that in each department a higher percentage of women
applicants were admitted than men applicants. Women, however, applied in disproportionately
large numbers to departments such as English and psychology that admitted only a small
percentage of their applicants, whereas men applied in disproportionately large numbers to
departments such as mathematics and engineering that admitted a much higher percentage of
their applicants. The men's admissions pattern was analogous to Gehrig's hitting pattern—coming
to bat more often during the second half of the season when getting a hit is easier.

Another counter-intuitive problem involving seemingly disproportionate probabilities
concerns a New York City man who has a woman friend in the Bronx and one in Brooklyn. He
is equally attached (or perhaps unattached) to each of them and thus is indifferent to whether
he catches the northbound subway to the Bronx or the southbound subway to Brooklyn. Since
both trains run every twenty minutes throughout the day, he figures he'll let the subway decide
whom he'll visit, and take the first train which comes along. After a while, though, his Brooklyn
woman friend, who's enamored of him, begins to complain that he shows up for only about
one-fourth of his dates with her, while his Bronx friend, who's getting sick of him, begins to
complain that he appears for three-fourths of his dates with her. Aside from callowness, what
is this man's problem?

The simple answer follows, so don't read on if you want to think a bit. The man's more
frequent trips to the Bronx are a result of the way the trains are scheduled. Even though they
each come every twenty minutes, the schedule may be something like the following: Bronx
train, 7:00; Brooklyn train, 7:05; Bronx train, 7:20; Brooklyn train, 7:25; and so on. The gap
between the last Brooklyn train and the next Bronx train is fifteen minutes, three times as long
as the five-minute gap between the last Bronx train and the next Brooklyn train, and thus
accounts for his showing up for three-fourths of his dates in the Bronx and only for one-fourth
of his Brooklyn dates.

Countless similar oddities result from our conventional ways of measuring, reporting, and
comparing periodic quantities, whether they be the monthly cash flow of a government or the
regular daily fluctuations in body temperature.



FAIR COINS AND LIFE'S WINNERS AND LOSERS

Imagine flipping a coin many times in succession and obtaining some sequence of heads and
tails; say, HHTHTTHHTHTTTHTTHHHTHTTHHTHHTTHTHHTTHHTHTHHHHTHHHTT. If
the coin is fair, there are a number of extremely odd facts about such sequences. For example, if one
were to keep track of the proportion of the time that the number of heads exceeded the number of
tails, one might be surprised that it is rarely close to half.

Imagine two players, Peter and Paul, who flip a coin at the rate of once a day and who bet on
heads and tails respectively. Peter is ahead at any given time if there've been more heads up until
then, while Paul is ahead if there've been more tails. Peter and Paul are each equally likely to be
ahead at any given time, but whoever is ahead will probably have been ahead almost the whole
time. If there have been one thousand coin flips, then if Peter is ahead at the end, the chances are
considerably greater that he's been ahead more than 90 percent of the time, say, than that he's
been ahead between 45 percent and 55 percent of the time! Likewise, if Paul is ahead at the end,
it's considerably more likely that he's been ahead more than 96 percent of the time than that
he's been ahead between 48 percent and 52 percent of the time.

Perhaps the reason this result is so counterintuitive is that most people tend to think of
deviations from the mean as being somehow bound by a rubber band: the greater the deviation,
the greater the restoring force toward the mean. The so-called gambler's fallacy is the mistaken
belief that because a coin has come up heads several times in a row, it's more likely to come up
tails on its next flip (similar notions hold for roulette wheels and dice).

The coin, however, doesn't know anything about any mean or rubber band, and if it's landed
heads 519 times and tails 481 times, the difference between its heads total and its tails total is
just as likely to grow as to shrink. This is true despite the fact that the proportion of heads
does approach 1/2 as the number of coin flips increases. (The gambler's fallacy should be
distinguished from another phenomenon, regression to the mean, which is valid. If the coin is
flipped a thousand more times, it is more likely than not that the number of heads on the second
thousand flips would be smaller than 519.)

In terms of ratios, coins behave nicely: the ratio of heads to tails gets closer to 1 as the
number of flips grows. In terms of absolute numbers, coins behave badly: the difference
between the number of heads and the number of tails tends to get bigger as we continue to flip
the coin, and the changes in lead from head to tail or vice versa tend to become increasingly
rare.

If even fair coins behave so badly in an absolute sense, it's not surprising that some people
come to be known as "losers" and others as "winners" though there is no real difference between
them other than luck. Unfortunately perhaps, people are more sensitive to absolute differences
between people than they are to rough equalities between them. If Peter and Paul have won,
respectively, 519 and 481 trials, Peter will likely be termed a winner and Paul a loser. Winners (and
losers) are often, I would guess, just people who get stuck on the right (or wrong) side of even. In
the case of coins, it can take a long, long time for the lead to switch, longer often than the
average life.



The surprising number of consecutive runs of heads or tails of various lengths give rise to
further counter-intuitive notions. If Peter and Paul flip a fair coin every day to determine who pays
for lunch, then it's more likely than not that at some time within about nine weeks Peter will have
won five lunches in a row, as will have Paul. And at some period within about five to six years
it's likely that each will have won ten lunches in a row.

Most people don't realize that random events generally can seem quite ordered. The
following is a computer printout of a random sequence of Xs and Os, each with probability l/2.

oxxxoooxxxoxxxoxxxxo
oxxoxxoxooxoxooooxox
xoooxxxoxoxxxxxxxxxo
xxxoxoxxxxoxooxxxooo
xxxxxooxxoooxxooooox
xooxxxxxxoxxxxooxxxx
ooxxoxxooxxoxoxooxxx
oxxoxxxxoxxoxxxxxxxx
xoxxxxxoooooxooxxxoo
xxxxooxooxoxxxoxxxxo
oooxoxoxxoxxxooxxooo
oxxxxxooooxxxxoxxoox
xxxxxoxxoooooooxoxxx
xxoooxxoxxxooooxoxox
ooxxxxoxoxxxoxxooxxo
xooxooxxxoxx

Note the number of runs and the way there seem to be clumps and patterns. If we felt
compelled to account for these, we would have to invent explanations that would of necessity be
false. Studies have been done, in fact, in which experts in a given field have analyzed such
random phenomena and come up with cogent "explanations" for the patterns.

With this in mind, think of some of the pronouncements of stock analysts. The daily ups
and downs of a particular stock, or of the stock market in general, certainly aren't completely
random as the Xs and Os above are, but it's safe to say that there is a very large element of
chance involved. You might never guess this, however, from the neat post hoc analyses that
follow each market's close. Commentators always have a familiar cast of characters to which
they can point to explain any rally or any decline. There's always profit-taking or the federal
deficit or something or other to account for a bearish turn, and improved corporate earnings or
interest rates or whatever to account for a bullish one. Almost never does a commentator say that
the market's activity for the day or even the week was largely a result of random fluctuations.



THE HOT HAND AND THE CLUTCH HITTER

The clumps, runs, and patterns that random sequences evince can to an extent be predicted.
Sequences of heads and tails of a given length, say twenty flips, generally have a certain number of
consecutive runs of heads. A sequence of twenty coin flips which resulted in ten heads followed by
ten tails (HHHHHHHHHHTTTTTTTTTT) is said to have just one run of heads. A sequence of
twenty coin flips which resulted in heads and tails alternating (HTHTHTHTHTHTHTHTHTHT) is
said to have ten runs of heads. Both these sequences are unlikely to be randomly generated. A
sequence of twenty flips with six runs of heads (say, HHTHHTHTTHHHTTHHTTHT) is more
likely to have been generated at random.

Criteria like this can be used to determine how likely it is that sequences of heads and tails or
Xs and Os or hits and misses are randomly generated. In fact, psychologists Amos Tversky and
Daniel Kahneman have analyzed the sequences of hits and misses of professional basketball
players whose basket-making was about 50 percent and found that they seemed to be completely
random —that a "hot hand" in basketball, one that would result in an inordinate number of long
streaks (runs) of consecutive baskets, just didn't seem to exist. The streaks that did occur were
most likely due to chance. If a player attempts twenty shots per night, for example, the probability
is surprisingly almost 50 percent that he will hit at least four straight baskets sometime during the
game. There's a 20 percent to 25 percent probability that he will achieve a streak of at least five
straight baskets sometime during the game, and approximately a 10 percent chance that he will
have a streak of six or more consecutive baskets.

Refinements can be made when the shooting percentage is other than 50 percent, and similar
results seem to hold. A player who scores 65 percent of his shots, say, scores his points in the way a
biased coin which lands heads 65 percent of the time "scores" its heads; i.e., each shot is
independent of the last.

I've always suspected that notions like a "hot hand" or a "clutch hitter" or a "team that
always comes back" were exaggerations used by sports-writers and sportscasters just to have
something to talk about. There surely is something to these terms, but too often they're the result
of minds intent on discovering meaning where there is only probability.

A very long hitting streak in baseball is a particularly amazing sort of record, so unlikely as
to seem virtually unachievable and almost immune to probabilistic prediction. Several years ago
Pete Rose set a National League record by hitting safely in forty-four consecutive games. If we
assume for the sake of simplicity that he batted .300 (30 percent of the time he got a hit, 70 percent
of the time he didn't) and that he came to bat four times per game, the chances of his not getting a
hit in any given game were, assuming independence, (.7)4 = .24. (Remember, independence means
he got hits in the same way a coin which lands heads 30 percent of the time gets heads.) So the
probability he would get at least one hit in any given game was 1 - .24 = .76. Thus, the chances
of his getting a hit in any given sequence of forty-four consecutive games were (.76)44 =
.0000057, a tiny probability indeed.

The probability that he would hit in a consecutive string of exactly forty-four games at some
time during the 162-game season is higher—.000041 (determined by adding up the ways in which



he might hit safely in some string of exactly forty-four consecutive games, and ignoring the
negligible probability of more than one streak). The probability that he'd hit safely in at least
forty-four straight games is about four times higher still. If we multiply this latter figure by the
number of players in the Major Leagues (adjusting the figure drastically downward for lower
batting averages) and then multiply by the approximate number of years there has been baseball
(adjusting for the various numbers of players in different years), we determine that it's actually not
unlikely that some Major Leaguer should at some time have hit safely in at least forty-four
consecutive games.

One last remark: I've examined Rose's streak of forty-four games rather than DiMaggio's
seemingly more impressive streak of fifty-six games because, given the differences in their
respective batting averages, Rose's streak was a slightly more unlikely accomplishment (even
with Rose's longer season of 162 games).

Rare events such as batting streaks that are the result of chance are not individually
predictable, yet the pattern of their occurrence is probabilistically describable. Consider a more
prosaic kind of event. One thousand married couples who desire to have three children each are
tracked for ten years, during which time 800 of them, assume, do manage to produce three children.
The probability any given couple has three girls is 1/2 x 1/2 x 1/2 = 1/8, so approximately a hundred
of these 800 couples will have three girls each. By symmetry, about a hundred of the couples will
have three boys each. There are three different sequences in which a family might have two girls
and a boy—GGB, GBG, or BGG, where the order of the letters indicates birth order— and each of
the three sequences has the same probability of 1/8, or (1/2)3. Thus, the probability of having two girls
and a boy is 3/8 and so approximately 300 of the 800 couples will have such a family. By symmetry,
about 300 couples will also have two boys and a girl.

Nothing is very surprising about the above, but the same sort of probabilistic description
(utilizing mathematics slightly more difficult than the above binomial distribution) is possible
with very rare events. The number of accidents each year at a certain intersection, the number of
rainstorms per year in a given desert, the number of cases of leukemia in a specified county, the
annual number of deaths due to horse kicks among certain cavalry units of the Prussian Army
have all been described quite accurately by the so-called Poisson probability distribution. It's
necessary first to know roughly how rare the event is. But if you do know, you can use this
information along with the Poisson formula to get a quite accurate idea of, for example, in what
percentage of years there would be no deaths due to horse kicks, in what percentage of years there
would be one such death, in what percentage of years two, in what percentage three, and so on.
Likewise you could predict the percentage of years in which there would be no desert rainstorms,
one such storm, two storms, three, and so on.

In this sense, even very rare events are quite predictable.



3 Pseudoscience

When asked why he doesn't believe in astrology, the logician Raymond Smullyan responds
that he's a Gemini, and Geminis never believe in astrology.

Sample of supermarket tabloid headlines: Miracle Pickup Truck Can Heal the Sick. Giant
Bigfoot Attacks Village. Seven-Year-Old Gives Birth to Twins in Toy Store. Scientists on
Verge of Creating Plant People. Incredible Swami Has Stood on One Leg since 1969.

———
Inspect every piece of pseudoscience and you will find a security blanket, a thumb to suck, a

skirt to hold. What have we to offer in exchange? Uncertainty! Insecurity!
—Isaac Asimov in the tenth-anniversary issue of The Skeptical Inquirer

To follow foolish precedents, and wink with both our eyes, is easier than to think.
—William Cowper

INNUMERACY, FREUD, AND PSEUDOSCIENCE

Innumeracy and pseudoscience are often associated, in part because of the ease with which
mathematical certainty can be invoked to bludgeon the innumerate into a dumb acquiescence.
Pure mathematics does indeed deal with certainties, but its applications are only as good as
the underlying empirical assumptions, simplifications, and estimations that go into them.

Even such fundamental mathematical verities as "equals can be substituted for equals,"
or "1 and 1 are 2," can be misapplied: one cup of water plus one cup of popcorn are not equal to
two cups of soggy popcorn, and "Infant Physician Duvalier" just doesn't have the same
impact as "Baby Doc." Similarly, President Reagan may believe that Copenhagen is in
Norway, but even though Copenhagen equals the capital of Denmark, it can't be concluded that
Reagan believes the capital of Denmark is in Norway. In so-called intentional contexts like
the above, the substitution doesn't always work.



If these basic principles can be misinterpreted, it shouldn't be surprising that more
esoteric mathematics can be, too. If one's model or one's data are no good, the conclusions that
follow won't be either. Applying old mathematics, in fact, is often more difficult than discovering
new mathematics. Any bit of nonsense can be computerized—astrology, bio-rhythms, the I
Ching—but that doesn't make the nonsense any more valid. Linear statistical projections, to
cite a frequently abused model, are often invoked so thoughtlessly that it wouldn't be
surprising to see someday that the projected waiting period for an abortion is one year.

This sort of careless reasoning is hardly limited to the uneducated. One of Freud's closest
friends, a surgeon named Wilhelm Fliess, invented bio-rhythmic analysis, a practice based
on the notion that various aspects of one's life follow rigid periodic cycles which begin at birth.
Fliess pointed out to Freud that 23 and 28, the periods for some metaphysical male and
female principles respectively, had the special property that if you add and subtract appropriate
multiples of them, you can attain any number. Stated a little differently: any number at all
can be expressed as 23X + 28Y for suitable choices of X and Y. For example, 6 = (23 x 10)
+ (28 x -8). Freud was so impressed with this that for years he was an ardent believer in
biorhythms and thought that he would die at the age of fifty-one, the sum of 28 and 23. As it
turns out, not only 23 and 28 but any two numbers that are relatively prime—that is, have no
factors in common—have the property that any number can be expressed in terms of them. So
even Freud suffered from innumeracy.

Freudian theory suffers from a more serious problem as well. Consider the statement:
"Whatever God wills, happens." People may be able to take solace from it, but it's clear that the
statement is not falsifiable and hence, as the English philosopher Karl Popper has insisted, not
part of science. "Plane crashes always come in threes." You always hear that, too, and if you wait
long enough, of course, everything comes in threes.

Popper has criticized Freudianism for claims and predictions which, though perhaps
comforting or suggestive in one way or another, are, like the above statements, largely
unfalsifiable. For example, an orthodox psychoanalyst might predict a certain kind of neurotic
behavior. When the patient doesn't react in the predicted way, but in a very different manner, the
analyst may attribute the opposite behavior to "reaction-formation." Likewise, when a Marxist
predicts that the "ruling class" will act in an exploitive manner and instead something quite
contrary takes place, he may attribute the outcome to an attempt by the ruling class to co-opt the
"working class." There always seem to be escape clauses which can account for anything.

This is certainly not the place to argue whether or not Freudianism and Marxism should be
deemed pseudosciences, but a tendency to confuse factual statements with empty logical
formulations leads to sloppy thought. For example, the statements "UFOs contain extraterrestrial
visitors" and "UFOs are unidentified flying objects" are two entirely different assertions. I once
gave a lecture in which a listener thought that I subscribed to a belief in extraterrestrial visitors,
when all I had said was that there undoubtedly were many cases of UFOs. A similar confusion is
satirized by Moliere when he has his pompous doctor announce that his sleeping potion works
because of its dormitive virtue. Since mathematics is the quintessential way to make impres-
sive-sounding claims which are devoid of factual content ("Scientists reveal that 36 inches equal
1 yard on the planet Pluto"), it's perhaps not surprising that it is an ingredient in a number of



pseudo-sciences. Abstruse calculations, geometric forms and algebraic terms, unusual
correlations—all have been used to adorn the silliest drivel.

PARAPSYCHOLOGY

Interest in parapsychology is very old, yet the simple fact is that there have been no
repeatable studies which have demonstrated its existence, Uri Geller and other charlatans
notwithstanding. ESP (extrasensory perception) in particular has never been shown in any
controlled experiment, and the few "successful" demonstrations have occurred in studies that
were fatally flawed. Rather than rehash them, I'd like to make some general observations.

The first one, which is embarrassingly obvious, is that ESP runs afoul of the fundamental
common-sense principle that the normal senses must somehow be involved for communication to
take place. When confidential information leaks out of an organization, people suspect a spy, not
a psychic. Hence, it is the presumption of common sense and science that these ESP phenomena
don't exist, and the burden of proof is on those who maintain that there are such phenomena.

This raises probabilistic considerations. Because of the way ESP is defined—communication
without any normal sensory mechanisms—there is no way to tell the difference between a single
incidence of ESP and a chance guess. They look exactly the same, just as a particular correct
answer on a true-false test looks the same whether the test taker is a straight-A student or
someone who's guessing at every question. Since we can't ask the ESP subjects to justify their
responses, as we can the true-false test takers, and since by definition there's no sensory
mechanism into whose functioning we can inquire, the only way we can demonstrate the existence
of ESP is by statistical test: run enough trials and see if the number of correct responses is
sufficiently large so as to rule out chance as the explanation. If chance is ruled out and there are
no other explanations, ESP will be demonstrated.

There is, of course, a tremendous will to believe which accounts for many of the faulty
experiments (such as J. B. Rhine's) and much of the outright chicanery (such as S. G. Soal's) that
seem to characterize the paranormal field. Another factor is what is sometimes referred to as the
Jeane Dixon effect (after the self-described psychic Jeane Dixon), whereby the relatively few
correct predictions are heralded and therefore widely remembered, while the much more
numerous incorrect predictions are conveniently forgotten or deemphasized. Supermarket tabloids
never provide an end-of-year list of false predictions by psychics, nor do the more upscale New Age
periodicals, which, despite a veneer of sophistication, are just as fatuous.

People often take the abundance and prominence of reports on psychics and
parapsychological matters to be a kind of evidence of their validity. Where there's so much
smoke (hot air, actually), people reason, there must be fire. The nineteenth century's infatuation
with phrenology—to continue with a somewhat different heady concern—demonstrates the
flimsiness of this line of thought. Then as now, pseudoscientific beliefs were not limited to the
uneducated, and the belief that various psychological and mental attributes were discernible by
examining the bumps and contours of one's head was widespread. Many corporations required



prospective employees to submit to phrenological examinations as a condition of employment,
and many couples contemplating marriage sought the advice of phrenologists. Periodicals
devoted to the subject appeared, and references to its doctrines pervaded popular literature.
Renowned educator Horace Mann saw phrenology as "the guide to philosophy and the
handmaiden of Christianity," and Horace Greeley of "Go West, young man" fame advocated
phrenology tests for all railroad engineers.

Descending to more pedestrian matters, let's consider the firewalker's practice of walking
barefoot on hot wood coals. The practice has often been cited as an example of "mind over
matter" and you don't have to be innumerate to be impressed initially with such a feat (or with
such feet). What makes this phenomenon less remarkable is the relatively little known fact that
dehydrated wood has an extremely low heat content and very poor heat conductivity. Just as it's
possible to put your hand into a hot oven without burning yourself as long as you don't touch
the metal oven racks, a person can walk quickly across burning wood coals without any serious
harm to his feet. Of course, quasi-religious talk about mind control is more appealing than a
discussion of heat content and conductivity. This, combined with the fact that these walkings
take place in the evening to heighten the contrast between the cool night air and surrounding
darkness and the hot glowing coals, accounts for the dramatic impact of firewalking.

Many other examples of pseudoscience (auras, crystal power, pyramids, the Bermuda
triangle, etc.) are unmasked in The Skeptical Inquirer, a delightful quarterly publication of
CSICOP, the Committee for the Scientific Investigation of Claims of the Paranormal, published
by philosopher Paul Kurtz in Buffalo, New York.

PREDICTIVE DREAMS

Another presumed kind of extrasensory perception is the predictive dream. Everyone has an
Aunt Matilda who had a vivid dream of a fiery car crash the night before Uncle Mortimer
wrapped his Ford around a utility pole. I'm my own Aunt Matilda: when I was a kid I once
dreamed of hitting a grand-slam home run and two days later I hit a bases-loaded triple. (Even
believers in precognitive experiences don't expect an exact correspondence.) When one has such
a dream and the predicted event happens, it's hard not to believe in precognition. But, as the
following derivation shows, such experiences are more rationally accounted for by coincidence.

Assume the probability to be one out of 10,000 that a particular dream matches in a few vivid
details some sequence of events in real life. This is a pretty unlikely occurrence, and means that
the chances of a nonpredictive dream are an overwhelming 9,999 out of 10,000. Also assume that
whether or not a dream matches experience one day is independent of whether or not some other
dream matches experience some other day. Thus, the probability of having two successive
nonmatching dreams is, by the multiplication principle for probability, the product of 9,999/10,000
and 9,999/10,000. Likewise, the probability of having N straight nights of nonmatching dreams is
(9,999/10,000)N; for a year's worth of nonmatching or nonpredictive dreams, the probability is
(9,999/10,000)365.



Since (9,999/10,000)365 is about .964, we can conclude that about 96.4 percent of the people who
dream every night will have only nonmatching dreams during a one-year span. But that means
that about 3.6 percent of the people who dream every night will have a predictive dream. 3.6
percent is not such a small fraction; it translates into millions of apparently precognitive dreams
every year. Even if we change the probability to one in a million for such a predictive dream, we'll
still get huge numbers of them by chance alone in a country the size of the United States. There's no
need to invoke any special parapsychological abilities; the ordinariness of apparently predictive
dreams does not need any explaining. What would need explaining would be the
nonoccurrence of such dreams.

The same could be said about a wide variety of other unlikely events and coincidences.
Periodically, for example, there are reports of some incredible collection of coincidences
linking two people, a phenomenon whose probability, let's say, is estimated to be one in a
trillion (1 divided by 1012, or 10-12). Should we be impressed? Not necessarily.

Since by the multiplication principle there are (2.5 x 108 x 2.5 x 108) or 6.25 x 1016

different pairs of people in the United States, and since we're assuming the probability of
this collection of coincidences to be about 10-12, the average number of "incredible" linkages
we can expect is 6.25 x 1016 times 10-12, or about 60,000. It's not so surprising, then, that
occasionally one of these 60,000 strange connections comes to light.

One collection of coincidences too unlikely to be dismissed in this way is provided by the
case of the proverbial monkey accidentally typing out Shakespeare's Hamlet. The
probability of this occurring is (1/35)N (where N is the number of symbols in Hamlet, maybe
200,000, and 35 is the number of typewriter symbols, including letters, punctuation symbols,
and the blank space). This number is infinitesimal—zero, for all practical purposes. Though
some have taken this tiny probability as an argument for "creation science," the only thing
it clearly indicates is that monkeys seldom write great plays. If they want to, they shouldn't
waste their time trying to peck one out accidentally but should instead evolve into something
that has a better chance of writing Hamlet.

Incidentally, why is the question never put as follows: What is the probability that
Shakespeare, by randomly flexing his muscles, might accidentally have found himself swinging
through the trees like a monkey?

LI'L OL' ME AND THE STARS

Astrology is a particularly widespread pseudo-science. The shelves of bookstores are stuffed
with books on the subject, and almost every newspaper publishes a daily horoscope. A 1986 Gallup
poll reports that 52 percent of American teenagers believe in it, and a distressing number of people
in all walks of life seem to accept at least some of its ancient claims. I say "distressing" because if
people believe astrologers and astrology, it's frightening to consider whom or what else they'll
believe. It's especially so when, like President Reagan, they have immense power to act on these
beliefs.



Astrology maintains that the gravitational attraction of the planets at the time of one's birth
somehow has an effect on one's personality. This seems very difficult to swallow, for two reasons:
(a) no physical or neurophysiological mechanism through which this gravitational (or other sort
of) attraction is supposed to act is ever even hinted at, much less explained; and (b) the
gravitational pull of the delivering obstetrician far outweighs that of the planet or planets
involved. Remember that the gravitational force an object exerts on a body—say, a newborn
baby—is proportional to the object's mass but inversely proportional to the square of the distance
of the object from the body—in this case, the baby. Does this mean that fat obstetricians deliver
babies that have one set of personality characteristics, and skinny ones deliver babies that have
quite different characteristics?

These deficiencies of astrological theory are less visible to the innumerate, who are not
likely to concern themselves with mechanisms, and who are seldom interested in comparing
magnitudes. Even without a comprehensible theoretical foundation, however, astrology
would deserve respect if it worked, if there were some empirical support for the accuracy of its
claims. But, alas, there is no correlation between the date of one's birth and scores on any
standard personality test.

Experiments have been performed (recently, by Shawn Carlson at the University of
California) in which astrologers have been given three anonymous personality profiles, one of
which was the client's. The client supplied all the relevant astrological data about his life (via
questionnaire, not face-to-face) and the astrologer was required to pick the personality profile
of the client. There were 116 clients altogether, and they were presented to thirty top (as
judged by their peers) European and American astrologers. The result: the astrologers picked
the correct personality profile for the clients about one out of three times, or no better than
chance.

John McGervey, a physicist at Case Western Reserve University, looked up the birth
dates of more than 16,000 scientists listed in American Men of Science and 6,000 politicians
listed in Who's Who in American Politics and found the distribution of their signs was random,
the signs uniformly distributed throughout the year. Bernard Silverman at Michigan State
University obtained the records of 3,000 married couples in Michigan and found no correlation
between their signs and astrologers' predictions about compatible pairs of signs.

Why, then, do so many people believe in astrology? One obvious reason is that people read into
the generally vague astrological pronouncements almost anything they want to, and thus invest
them with a truth which is not inherent in the pronouncements themselves. They're also more
likely to remember true "predictions," overvalue coincidences, and ignore everything else. Other
reasons are its age (of course, ritual murder and sacrifice are as old), its simplicity in principle and
comforting complexity in practice, and its flattering insistence on the connection between the
starry vastness of the heavens and whether or not we'll fall in love this month.

One last reason, I would guess, is that during individual sessions astrologers pick up on
clues about clients' personalities from their facial expressions, mannerisms, body language, etc.
Consider the famous case of Clever Hans, the horse who seemed to be able to count. His trainer
would roll a die and ask him what number appeared on the die's face. Hans would slowly paw the
ground the appropriate number of times and then stop, much to the amazement of onlookers. What
was not so noticeable, however, was that the trainer stood stone-still until the horse pawed the



correct number of times, and then, consciously or not, stirred slightly, which caused Hans to
stop. The horse was not the source of the answer but merely a reflection of the trainer's
knowledge of the answer. People often unwittingly play the role of trainer to astrologers who,
like Hans, reflect their clients' needs.

The best antidote to astrology in particular and to pseudoscience in general is, as Carl
Sagan has written, real science, whose wonders are as amazing but have the added virtue of
probably being real. After all, it's not the outlandishness of its conclusions that makes
something a pseudoscience: lucky guesses, serendipity, bizarre hypotheses, and even an initial
gullibility all play a role in science as well. Where pseudosciences fail is in not subjecting their
conclusions to a test, in not linking them in a coherent way to other statements which have
withstood scrutiny. It's hard for me to imagine Shirley MacLaine, for example, rejecting the
reality of some seemingly paranormal event such as trance channeling merely because there
isn't enough evidence for it, or because there is a better alternative explanation.

EXTRATERRESTRIAL LIFE, YES;
VISITORS IN UFOS, NO

In addition to astrology, innumerates are considerably more likely than others to believe
in visitors from outer space. Whether or not there have been such visits is a question distinct
from whether or not there is other conscious life in the universe. I'll develop some very
approximate estimates to indicate why, though there probably are other life forms in our
very galaxy, they most likely haven't paid us a courtesy call (despite the claims of books such
as Budd Hopkins's The Intruders and Whitley Strieber's Communion). The estimates provide
a good example of how numerical horse sense can check pseudoscientific ravings.

If intelligence developed naturally on earth, it is difficult to see why the same process
wouldn't have occurred elsewhere. What's needed is a system of physical elements capable of
many different combinations, and a source of energy through the system. The energy flux
causes the system to "explore" various combinations of possibilities, until a small collection of
stable, complex, energy-storing molecules develops, followed by the chemical evolution of more
complex compounds, including some amino acids, from which proteins are constructed.
Eventually, primitive life develops, and then shopping malls.

It's estimated that there are approximately 100 billion stars (1011) in our galaxy, of which,
say, 1/10th support a planet. Of these approximately 10 billion stars, perhaps one out of a
hundred contains a planet which lies within the life zone of the star, not too close for its
solvent, water or methane or whatever, to boil away and not too far to be frozen solid. Now we're
down to approximately 100 million stars (108) in our galaxy which could support life. Since
most of them are considerably smaller than our sun, only about 1/10th of these stars should be
considered reasonable candidates for supporting planets with life. Still, this leaves us with 10
million stars (107) in our galaxy alone capable of supporting life, of which perhaps 1/10th have



already developed life! Let's assume that there are indeed 106—or a million—stars with planets
which support life in our own galaxy. Why don't we see any evidence?

One reason is that our galaxy is a big place, having a volume of about 1014 cubic
light-years where a light-year is the distance light travels in one year at 186,000 miles per
second—about 6 trillion miles. Thus, on average, each of these million stars has 1014 divided by
106 cubic light-years of volume for itself; that's 108 cubic light-years of volume for each star
assumed to support life. The cube root of 108 is approximately 500, meaning that the average
distance between any one of the galaxy's life-supporting stars and its closest neighbor would
be 500 light-years—about ten billion times the distance between the earth and the moon! The
distance between close "neighbors," even if it were considerably less than the average, would
seem to preclude frequent popping in for a chat.

The second reason we would be quite unlikely to see any little green men is that possible
civilizations are bound to be scattered in time, coming into existence and then dying out. In
fact, it could well be the case that life, once it becomes complex, is inherently unstable and
will self-destruct within a few thousand years. Even if such advanced life forms had an
average duration of 100 million years (the time from early mammals to a possible twen-
tieth-century nuclear holocaust), these life forms spread uniformly over the 12-15 billion-year
history of our galaxy would result in fewer than 10,000 stars in our galaxy supporting advanced
life at any one time. The average distance between neighbors would jump to more than 2,000
light-years.

The third reason we haven't had any tourists is that even if life has developed on a number
of planets within our galaxy, there's probably little likelihood they'd be interested in us. The
life forms could be large clouds of methane gas, or self-directed magnetic fields, or large plains
of potato-like beings, or giant planet-sized entities which spend their time singing complex
symphonies, or more likely a sort of planetary scum adhering to the sides of rocks facing their
sun. There's little reason to suppose that any of the above would share our goals or psychology
and try to reach us.

In short, though there probably is life on other planets in our galaxy, the sightings of
UFOs are almost certainly just that—sightings of unidentified flying objects. Unidentified, but
not unidentifiable or alien.

FRAUDULENT MEDICAL TREATMENTS

Medicine is a fertile area for pseudoscientific claims for a simple reason. Most diseases
or conditions (a) improve by themselves; (b) are self-limiting; or (c) even if fatal, seldom
follow a strictly downward spiral. In each case, intervention, no matter how worthless, can
appear to be quite efficacious.

This becomes clearer if you assume the point of view of a knowing practitioner of
fraudulent medicine. To take advantage of the natural ups and downs of any disease (as well
as of any placebo effect), it's best to begin your worthless treatment when the patient is



getting worse. In this way, anything that happens can more easily be attributed to your
wonderful and probably expensive intervention. If the patient improves, you take credit; if he
remains stable, your treatment stopped his downward course. On the other hand, if the patient
worsens, the dosage or intensity of the treatment was not great enough; if he dies, he delayed
too long in coming to you.

In any case, the few instances in which your intervention is successful will likely be
remembered (not so few, if the disease in question is self-limiting), while the vast majority of
failures will be forgotten and buried. Chance provides more than enough variation to account for
the sprinkling of successes that will occur with almost any treatment; indeed, it would be a
miracle if there weren't any "miracle cures."

Much of the above applies as well to faith healers, psychic surgeons, and an assorted
variety of other practitioners from homeopathic physicians to TV evangelists. Their
prominence constitutes a strong argument for an infusion of healthy skepticism into our
schools, a state of mind generally incompatible with innumeracy. (By this dismissive attitude
toward these charlatans, however, I don't mean to advocate a rigid and dogmatic scientism or
some kind of simpleminded atheism. There's a long way from Adonai to I Don't Know to I
Deny—to adapt a line from poet Howard Nemerov—and plenty of room in the middle for
reasonable people to feel comfortable.)

Even in outlandish cases, it's often difficult to refute conclusively some proposed cure or
procedure. Consider a quack diet doctor who directs his patients to consume two whole pizzas,
four birch beers, and two pieces of cheesecake for every breakfast, lunch, and dinner, and an
entire box of fig bars with a quart of milk for a bedtime snack, claiming that other people have
lost six pounds a week on such a regimen. When several patients follow his instructions for
three weeks, they find they've gained about seven pounds each. Have the doctor's claims been
refuted? Not necessarily, since he might respond that a whole host of auxiliary understandings
weren't met: the pizzas had too much sauce, or the dieters slept sixteen hours a day, or the
birch beer wasn't the right brand. The point is that one can usually find loopholes which will
enable one to hold on to whatever pet theory one fancies.

The philosopher Willard Van Orman Quine goes even further and maintains that experience
never forces one to reject any particular belief. He views science as an integrated web of
interconnecting hypotheses, procedures, and formalisms, and argues that any impact of the
world on the web can be distributed in many different ways. If we're willing to make drastic
enough changes in the rest of the web of our beliefs, the argument goes, we can hold to our
belief in the efficacy of the above diet, or indeed in the validity of any pseudoscience.

Less controversial is the contention that there are no clear-cut, easy algorithms that allow
us to distinguish science from pseudoscience in all cases. The boundary between them is too
fuzzy. Our unifying topics, number and probability, do, however, provide the basis for statistics,
which, together with logic, constitutes the foundation of the scientific method, which will
eventually sort matters out if anything can. However, just as the existence of pink does not
undermine the distinction between red and white, and dawn doesn't indicate that day and night
are really the same, this problematic fringe area, Quinian arguments notwithstanding, doesn't
negate the fundamental differences between science and its impostors.



CONDITIONAL PROBABILITY, BLACKJACK, AND DRUG TESTING

One needn't be a believer in any of the standard pseudosciences to make faulty claims and
invalid inferences. Many mundane mistakes in reasoning can be traced to a shaky grasp of the
notion of conditional probability. Unless the events A and B are independent, the probability of
A is different from the probability of A given that B has occurred. What does this mean?

To cite a simple example, the probability that a person chosen at random from the phone
book is over 250 pounds is quite small. However, if it's known somehow that the person chosen
is over six feet four inches tall, then the conditional probability that he or she also weighs more
than 250 pounds is considerably higher. The probability of rolling a pair of dice and getting a
12 is 1/36. The conditional probability of getting a 12 when you know you have gotten at least an
11 is 1/3. (The outcomes could only be 6,6; 6,5; 5,6 and thus there's one chance in three that the
sum is 12, given that it's at least 11.)

A confusion between the probability of A given B and the probability of B given A is also
quite common. A simple example: the conditional probability of having chosen a king card
when it's known that the card is a face card—a king, queen, or jack—is 1/3. However, the
conditional probability that the card is a face card given that it's a king is 1, or 100 percent.
The conditional probability that someone is an American citizen, given that he or she speaks
English, is, let's assume, about 1/5. The conditional probability that someone speaks English,
given that he or she is an American citizen, on the other hand, is probably about 19/20 or .95.

Consider now some randomly selected family of four which is known to have at least one
daughter. Say Myrtle is her name. Given this, what is the conditional probability that Myrtle's
sibling is a brother? Given that Myrtle has a younger sibling, what is the conditional
possibility that her sibling is a brother? The answers are, respectively, 2/3 and 1/2.

In general, there are four equally likely possibilities for a family with two children—BB,
BG, GB, GG, where the order of the letters B (boy) and G (girl) indicates birth order. In the
first case, the possibility BB is ruled out by assumption, and in two of the three other equally
likely possibilities, there is a boy, Myrtle's brother. In the second case, the possibilities BB and
BG are ruled out since Myrtle, a girl, is the older sibling, and in one of the remaining two
equally likely possibilities, there is a boy, Myrtle's brother. In the second case, we know more,
accounting for the differing conditional probabilities.

Before I get to a serious application, I'd like to mention another con game which works
because of confusion about conditional probability. Imagine a man with three cards. One is
black on both sides, one red on both sides, and one black on one side and red on the other. He
drops the cards into a hat and asks you to pick one, but only to look at one side; let's assume
it's red. The man notes that the card you picked couldn't possibly be the card that was black
on both sides, and therefore it must be one of the other two cards—the red-red card or the
red-black card. He offers to bet you even money that it is the red-red card. Is this a fair bet?

At first glance, it seems so. There are two cards it could be; he's betting on one, and you're
betting on the other. But the rub is that there are two ways he can win and only one way you can
win. The visible side of the card you picked could be the red side of the red-black card, in which
case you win, or it could be one side of the red-red card, in which case he wins, or it could be the



other side of the red-red card, in which case he also wins. His chances of winning are thus 2/3
The conditional probability of the card being red-red given that it's not black-black is 1/2, but
that's not the situation here. We know more than just that the card is not black-black; we also
know a red side is showing.

Conditional probability also explains why blackjack is the only casino game of chance in
which it makes sense to keep track of past occurrences. In roulette, what's occurred previously
has no effect on the probability of future spins of the wheel. The probability of red on the next
spin is 18/38, the same as the conditional probability of red on the next spin given that there
have been five consecutive reds. Likewise with dice: the probability of rolling a 7 with a pair of
dice is 1/6, the same as the conditional probability of rolling a 7 given that the three previous
rolls have been 7s. Each trial is independent of the past.

A game of blackjack, on the other hand, is sensitive to its past. The probability of drawing
two aces in succession from a deck of cards is not (4/52 x 4/ 52) but rather (4/52 x 3/51), the
latter factor being the conditional probability of choosing another ace given that the first card
chosen was an ace. Likewise, the conditional probability that a card drawn from a deck will be
a face card, given that only two of the thirty cards drawn so far have been face cards, is not
12/52 but a much higher 10/22. This fact—that (conditional) probabilities change according to
the composition of the remaining portion of the deck—is the basis for various counting
strategies in blackjack that involve keeping track of how many cards of each type have already
been drawn and increasing one's bet when the odds are (occasionally and slightly) in one's favor.

I've made money at Atlantic City using these counting strategies, and even considered
having a specially designed ring made which would enable me to count more easily. I decided
against it, though, since, unless one has a large bankroll, the rate at which one wins money is
too slow to be worth the time and intense concentration required.

An interesting elaboration on the concept of conditional probability is known as Bayes'
theorem, first proved by Thomas Bayes in the eighteenth century. It's the basis for the
following rather unexpected result, which has important implications for drug or AIDS testing.

Assume that there is a test for cancer which is 98 percent accurate; i.e., if someone has
cancer, the test will be positive 98 percent of the time, and if one doesn't have it, the test will
be negative 98 percent of the time. Assume further that .5 percent— one out of two hundred
people—actually have cancer. Now imagine that you've taken the test and that your doctor
somberly informs you that you've tested positive. The question is: How depressed should you be?
The surprising answer is that you should be cautiously optimistic. To find out why, let's look at
the conditional probability of your having cancer, given that you've tested positive.

Imagine that 10,000 tests for cancer are administered. Of these, how many are positive? On
the average, 50 of these 10,000 people (.5 percent of 10,000) will have cancer, and so, since 98
percent of them will test positive, we will have 49 positive tests. Of the 9,950 cancerless people, 2
percent of them will test positive, for a total of 199 positive tests (.02 x 9,950 = 199). Thus, of
the total of 248 positive tests (199 + 49 = 248), most (199) are false positives, and so the
conditional probability of having cancer given that one tests positive is only 49/248, or about 20
percent! (This relatively low percentage is to be contrasted with the conditional probability
that one tests positive, given that one has cancer, which by assumption is 98 percent.)



This unexpected figure for a test that we assumed to be 98 percent accurate should give
legislators pause when they contemplate instituting mandatory or widespread testing for drugs
or AIDS or whatever. Many tests are less reliable: a recent article in The Wall Street Journal,
for example, suggests that the well-known Pap test for cervical cancer is only 75 percent
accurate. Lie-detection tests are notoriously inaccurate, and calculations similar to the above
demonstrate why truthful people who flunk polygraph tests usually outnumber liars. To
subject people who test positive to stigmas, especially when most of them may be false
positives, is counterproductive and wrong.

NUMEROLOGY

Less worrisome than inaccurate tests is numerology, the last pseudoscience I want to
discuss, and my favorite. It is a very old practice common to a number of ancient and medieval
societies and involves the assignment of numerical values to letters and the consequent reading
of significance into the numerical equality between various words and phrases.

The numerical values of the letters in the Hebrew word for "love" (ahavah) add up to 13, the
same total as the letters in the word for "one" (ehad). Since "one" is short for "one God," the
equality of the two words was deemed significant by many, as was the fact that their sum is
26, the numerical equivalent of "Yahweh," the divine name of God.

The number 26 was important for other reasons: in verse 26 of the first chapter of Genesis,
God says: "Let us make man in our image"; Adam and Moses were separated by 26 generations;
and the difference between the numerical equivalent of Adam (45) and that of Eve (19) is 26.

The rabbis and cabalists who engaged in numerology (gematria) used a variety of other
systems as well, sometimes disregarding powers of 10—taking 10 to be 1, 20 to be 2, and so on.
Thus, since the first letter of "Yahweh" was assigned a value of 10, it could, when the occasion
demanded, be assigned a value of 1, making "Yahweh" equal in value to 17, the same as the
numerical equivalent of the word for "good" (tov). At other times they considered the squares
of the numerical values of the letters, in which case "Yahweh" would equal 186, the same as
the word for "place" (Maqom), another way of referring to God.

The Greeks, too, engaged in numerological practice (isopsephia), both in antiquity, with the
number mysticism of Pythagoras and his school, and especially later, with the introduction of
Christianity. In this system the Greek word for "God" (Theos) had a numerical value of 284, as
did the words for "holy" and "good." The numerical value of the letters alpha and omega, the
beginning and the end, was 801, the same as the word for "dove" (peristera), and was supposed to
be a mystical corroboration of the Christian belief in a Trinity. The Greek Gnostics noted that
the Greek word for "Nile River" had a numerical value of 365, indicating the annual nature
of its floods.

Christian mystics devoted much energy to deciphering the number 666, said by John the
Apostle to designate the name of the Beast of the Apocalypse, the Antichrist. The method used to
assign numbers to letters was not specified, however, and so it's not entirely clear to whom the



number refers. "Caesar Nero," the name of the first Roman Emperor to persecute the Christians,
had a value of 666 in the Hebrew system, as did the word for "Latins" in the Greek system. The
number has often been used in the service of ideology: a Catholic writer of the sixteenth century
wrote a book whose gist was that Martin Luther was the Antichrist, since in the Latin system his
name had a value of 666. Soon enough, some of Luther's followers responded that the words in the
papal crown, "Vicar of the Son of God," had the value 666 if one added the Roman numerals
corresponding to letters appearing in the phrase. More recently, the extreme fundamentalist
right has noted that each word in the name Ronald Wilson Reagan has six letters.

Similar examples could be given of Moslem numerological practices. Such numerical readings
(Jewish, Greek, Christian, and Moslem) were used not just to provide mystical confirmation of
religious doctrine but also in soothsaying, dream interpretation, divination by numbers, etc. Often,
they were opposed by orthodox clergy, but were very popular among the laity.

Even today, some of these numerological superstitions are not dead. I wrote a review for The
New York Times of Georges Ifrah's From One to Zero (from which most of the above is taken) and
referred in a completely neutral manner to the number 666, Martin Luther, and the papal crown.
In response I received a half dozen deranged, anti-Semitic letters, some calling me the Antichrist.
Procter and Gamble had similar but more severe problems a few years ago with reference to the
numerico-symbolic nature of its logo.

Numerology, especially in its soothsaying and divinatory aspects, is in many ways a typical
pseudoscience. It makes predictions and claims that are almost impossible to falsify since an
alternative formulation consistent with what happened is always easy to dream up. Based on
number, it has a limitless complexity to engage the ingenuity and creativity of its adherents,
without burdening them with the need for validation or testing. Its expressions of equality are
generally used to corroborate some existing doctrine, and little if any effort is expended to construct
counter-examples. Surely, "God" must be numerically equivalent to phrases which deny doctrine,
or to words which are sacrilegious or funny. (I'll forgo giving my examples.) Like many other
pseudosciences, numerology is ancient, and acquires some respectability from its religious
associations.

Still, if one subtracts all the superstitious elements from the subject, there's something
appealing about the small residue that remains. Its purity (just numbers and letters) and
tabula-rasa quality (like a Rorschach test) allow one maximum scope for seeing what one
wants to see, for connecting what one wants to connect, for providing at the very least a
limitless source of mnemonic devices.

LOGIC AND PSEUDOSCIENCE

Since numbers and logic are inextricably intertwined both theoretically and in the popular
mind, it's perhaps not stretching matters too far to describe faulty logic as a kind of innumeracy.
This assumption has in fact been implicit throughout much of this chapter. Let me end, then,



with a couple of additional bad inferences which are further suggestive of the role that
innumeracy—in the guise of fallacious logic—plays in pseudoscience.

Confusing a conditional statement—if A, then B—with its converse—if B, then A—is a
very common mistake. A slightly unusual version of it occurs when people reason that if X
cures Y, then lack of X must cause Y. If the drug dopamine, e.g., brings about a decrease in
the tremors of Parkinson's disease, then lack of dopamine must cause tremors. If some other
drug relieves the symptoms of schizophrenia, then an excess of it must cause schizophrenia.
One is not as likely to make this mistake when the situation is more familiar. Not too many
people believe that since aspirin cures headaches, lack of aspirin in the bloodstream must
cause them.

From a jar of fleas before him, the celebrated experimenter Van Dumholtz carefully
removes a single flea, gently pulls off its back legs, and in a loud voice commands it to
jump. He notes that it doesn't move and tries the same thing with a different flea. When he's
finished, he compiles statistics and concludes confidently that a flea's ears are in its back legs.
Absurd perhaps, but variants of this explanation in less transparent contexts might carry
considerable force for people with strong enough preconceptions. Is the explanation any more
absurd than that accepted by those who believe the woman who maintains that she is the
channel through which a 35,000-year-old man expresses himself? Is it more strained than claims
that the skepticism of onlookers systematically prevents the occurrence of certain paranormal
phenomena?

What's wrong with the following not quite impeccable logic? We know that 36 inches = 1 yard.
Therefore, 9 inches = 1/4 of a yard. Since the square root of 9 is 3 and the square root of 1/4 is 1/2, we
conclude that 3 inches = 1/2 yard!

Disproving a claim that something exists is often quite difficult, and this difficulty is often
mistaken for evidence that the claim is true. Pat Robertson, the former television evangelist and
Presidential candidate, maintained recently that he couldn't prove that there weren't Soviet missile
sites in Cuba and therefore there might be. He's right, of course, but neither can I prove that Big
Foot doesn't own a small plot of land outside Havana. New Agers make all sorts of existence
assertions: that ESP exists, that there have been instances of spoon bending, that spirits abound, that
there are aliens among us, etc. Presented as I periodically am with these and other fantastical
claims, I sometimes feel a little like a formally dressed teetotaler at a drunken orgy for reiterating
that not being able to conclusively refute the claims does not constitute evidence for them.

Many more vignettes illustrating this and other simple logical errors might be cited, but the
point is clear enough: both innumeracy and defective logic provide a fertile soil for the growth
of pseudoscience. Why both are so widespread is the topic of the next chapter.



4 Whence Innumeracy?

Recent personal experience at a suburban fast-food restaurant: My order of a hamburger,
French fries, and a Coke comes to $2.01, and the cashier, who's worked there for months at
least, fumbles with the 6 percent tax chart at the side of the cash register, searching for the
line that says $2.01—$.12. Accommodating their innumerate help, the larger franchises now
have cash registers which have pictures, on the keys, of the items ordered and automatically
add on the appropriate tax.

————

A study indicates that whether or not a department has a mathematics or a statistics
requirement is the most important single determinant of where a woman will attend graduate
school to study political science.

When I heard the learn'd astronomer where he lectured with much applause in the
lecture-room / How soon unaccountable I became tired and sick.

—Walt Whitman

REMEMBRANCE OF INNUMERACIES PAST

Why is innumeracy so widespread even among otherwise educated people? The reasons, to be a
little simplistic, are poor education, psychological blocks, and romantic misconceptions about the
nature of mathematics. My own case was the exception that proves the rule. The earliest memory I
have of wanting to be a mathematician was at age ten, when I calculated that a certain relief
pitcher for the then Milwaukee Braves had an earned run average (ERA) of 135. (For baseball fans:
He allowed five runs to score and retired only one batter.) Impressed by this extraordinarily bad
ERA, I diffidently informed my teacher, who told me to explain the fact to my class. Being quite
shy, I did so with a quavering voice and a reddened face. When I finished, he announced that I was
all wrong and that I should sit down. ERAs, he asserted authoritatively, could never be higher
than 27.

At the end of the season, The Milwaukee Journal published the averages of all Major League
players, and since this pitcher hadn't played again, his ERA was 135, as I had calculated. I
remember thinking of mathematics as a kind of omnipotent protector. You could prove things
to people and they would have to believe you whether they liked you or not. So, still smarting
from my perceived humiliation, I brought in the paper to show the teacher. He gave me a dirty



look and again told me to sit down. His idea of a good education apparently was to make sure
everyone remained seated.

Though not dominated by martinets like my teacher, early mathematics education is
generally poor. Elementary schools by and large do manage to teach the basic algorithms for
multiplication and division, addition and subtraction, as well as methods for handling fractions,
decimals, and percentages. Unfortunately, they don't do as effective a job in teaching when to
add or subtract, when to multiply or divide, or how to convert from fractions to decimals or
percentages. Seldom are arithmetic problems integrated into other schoolwork—how much,
how far, how old, how many. Older students fear word problems in part because they have not
been asked to find solutions to such quantitative questions at the elementary level.

Although few students get past elementary school without knowing their arithmetic
tables, many do pass through without understanding that if one drives at 35 m.p.h. for four
hours, one will have driven 140 miles; that if peanuts cost 40 cents an ounce and a bag of them
costs $2.20, then there are 5.5 ounces of peanuts in the bag; that if 1/4 of the world's population
is Chinese and 1/5 of the remainder is Indian, then 3/20 or 15 percent of the world is Indian. This
sort of understanding is, of course, not the same as simply knowing that 35 x 4 = 140; that
(2.2)/(.4) = 5.5; that 1/5 x (1 - 1/4) = 3/20 = .15 = 15 percent. And since it doesn't come
naturally to many elementary students, it must be furthered by doing numerous problems,
some practical, some more fanciful.

Estimation is generally not taught either, aside from a few lessons on rounding off
numbers. The connection is rarely made that rounding off and making reasonable estimates have
something to do with real life. Grade-school students aren't invited to estimate the number of
bricks in the side of a school wall, or how fast the class speedster runs, or the percentage of
students with bald fathers, or the ratio of one's head's circumference to one's height, or how
many nickels are necessary to make a tower equal in height to the Empire State Building, or
whether all those nickels would fit in their classroom.

Almost never is inductive reasoning taught or are mathematical phenomena studied with
an eye toward guessing the relevant properties and rules. A discussion of informal logic is as
common in elementary mathematics courses as is a discussion of Icelandic sagas. Puzzles,
games, and riddles aren't discussed—in many cases, I'm convinced, because it's too easy for
bright ten-year-olds to best their teachers. The intimate relationship between mathematics and
such games has been explored most engagingly by mathematics writer Martin Gardner, whose
many charming books and Scientific American columns would make exciting outside reading for
high school or college students (were they but assigned), as might mathematician George
Polya's How to Solve It or Mathematics and Plausible Reading. A delightful book with
something of the flavor of these others, but at an elementary level, is I Hate Mathematics by
Marilyn Burns. It's full of what elementary math textbooks rarely have—heuristic tips on
problem solving and whimsy.

Instead, too many textbooks still list names and terms, with few if any illustrations. They
note, for example, that addition is said to be an associative operation since (a + b) + c = a +
(b + c). Seldom is any mention made of an operation which is non-associative, so the
definition seems unnecessary at best. In any case, what can you do with this piece of
information? Other terms seem to be introduced with no rationale other than that they look



impressive when printed in boldface type inside a little box in the middle of the page. They
satisfy many people's conception of knowledge as a kind of general botany where there's a place
for everything and everything has its place. Mathematics as a useful tool or as a way of
thinking or as a source of pleasure is a notion quite foreign to most elementary-education
curricula (even to those whose textbooks are adequate).

One would think that, at this level, computer software would be available to help
communicate the basics of arithmetic and its applications (word problems, estimation, etc.).
Unfortunately, the programs we have at present are too often transcriptions onto television
monitors of unimaginative lists of routine exercises taken from the textbooks. I'm not aware of
any software which offers an integrated, coherent, and effective approach to arithmetic and its
problem-solving applications.

Some of the blame for the generally poor instruction in elementary schools must ultimately
lie with teachers who aren't sufficiently capable, and who too often have little interest in or
appreciation of mathematics. In turn, some of the blame for that lies, I think, with schools of
education in colleges and universities which place little or no emphasis on mathematics in their
teacher-training courses. It's been my experience that students in secondary math education (as
opposed to math majors) are generally among the worst students in my classes. The background in
math of prospective elementary-school teachers is even worse; in many cases, nonexistent.

A partial solution might be the hiring of one or two mathematics specialists per elementary
school who would move from room to room throughout the school day, supplementing (or teaching)
the mathematics curriculum. I sometimes think it would be a good idea if math professors and
elementary-school teachers switched places for a few weeks each year. No harm would come to the
math majors and graduate students at the hands of the elementary-school teachers (in fact, the
latter might learn something from the former), while the third-, fourth-, and fifth-graders might
greatly benefit from exposure to mathematical puzzles and games competently presented.

A little digression. This connection between puzzles and mathematics persists through to
graduate and research-level mathematics, and the same may be said of humor. In my book
Mathematics and Humor I tried to show that both activities are forms of intellectual play, which
often find common ground in brainteasers, puzzles, games, and paradoxes.

Both mathematics and humor are combinatorial, taking apart and putting together ideas for
the fun of it—-juxtaposing, generalizing, iterating, reversing (AIXELSYD). What if I relax this
condition and strengthen that one? What does this idea—say, the knotting of braids—have in
common with that one in some other seemingly disparate area—say, the symmetries of some
geometric figure? Of course, this aspect of mathematics isn't very well known even to the
numerate, since it's necessary to have some mathematical ideas first before you can play around
with them. As well, ingenuity, a feeling for incongruity, and a sense of economical expression are
crucial to both mathematics and humor.

Mathematicians, it may be noted, have a characteristic sense of humor which may be a result
of their training. They have a tendency to take expressions literally, and this literal interpretation is
often incongruous with the standard one and therefore comical. (Which two sports have face-offs?
Ice hockey and leper boxing.) They indulge as well in reductio ad absurdum, the logical practice
of taking any premise to an extreme, and in various sorts of combinatorial word play.



If mathematics education communicated this playful aspect of the subject, formally at the
elementary, secondary, or college level or informally via popular books, I don't think innumeracy
would be as widespread as it is.

SECONDARY, COLLEGE, AND GRADUATE EDUCATION

Once students reach high school, the problem of teacher competence becomes more critical. So
many of the limited pool of mathematically talented people now work in the computer industry or in
investment banking or related fields that I think only substantial salary bonuses for well-qualified
secondary-school math teachers will keep the situation in our high schools from getting worse.
Since at this level a long list of education courses is not as essential as having a mastery of the
relevant mathematics, certifying retired engineers and other science professionals to teach
mathematics might be of considerable help. As it is, the basic elements of mathematical culture
are in many cases not being communicated to our students. Vieta in 1579 began to use algebraic
variables—X, Y, Z, etc.—to symbolize unknown quantities. A simple idea this, yet many high
school students today can't follow this four-hundred-year-old method of reasoning: Let X be the
unknown quantity, find an equation which X satisfies, and then solve it in order to find the value
of the unknown.

Even when the unknowns are appropriately symbolized and the relevant equation can be set
up, the manipulations necessary to solve it are too often only hazily understood. I wish I had five
dollars for every student who got through his or her high school algebra class only to write, on a
test in freshman calculus, that (X + Y)2 = X2 + Y2.

Approximately fifty years after Vieta's use of algebraic variables, Descartes devised a way of
associating points on a plane with ordered pairs of real numbers and, via this association, a way
of identifying algebraic equations with geometric curves. The subject that grew out of this
critical insight, analytic geometry, is essential to understanding calculus; yet our students are
coming out of high school unable to graph straight lines or parabolas.

Even the 2,500-year-old Greek idea of an axiomatic geometry—a few self-evident axioms
being assumed, and from them the theorems being derived by logic alone—is not being
effectively taught in secondary school. One of the most commonly used books in high school
geometry classes makes use of more than a hundred axioms to prove a similar number of
theorems! With so many axioms, all the theorems are surface ones requiring only three or four
steps to prove; none has any depth.

In addition to some understanding of algebra, geometry, and analytic geometry, high
school students should be exposed to some of the most important ideas of so-called finite
mathematics. Combinatorics (which studies various ways of counting the permutations and
combinations of objects), graph theory (which studies networks of lines and vertices and the
phenomena which can be modeled by such), game theory (the mathematical analysis of
games of all sorts), and especially probability, are increasingly important. In fact, the move to
teach calculus in some high schools seems to me wrong-headed if it leads to the exclusion of the



above topics in finite mathematics. (I'm writing here of an ideal high school curriculum. As the
recent "Mathematics Report Card" administered by the Educational Testing Service has
indicated, the majority of our high school students can barely solve the elementary problems I
mentioned a few pages back.)

High school is the time to reach students. After they get to college, it's often too late for many
of them who lack adequate backgrounds in algebra and analytic geometry. Even students who have
a reasonable math background are not always aware of the extent to which other subjects are
becoming "mathematicized," and they, too, take a minimum of mathematics in college.

Women, in particular, may end up in lower-paying fields because they do everything in their
power to avoid a chemistry or an economics course with mathematics or statistics prerequisites.
I've seen too many bright women go into sociology and too many dull men go into business, the
only difference between them being that the men managed to scrape through a couple of college
math courses.

The students who do major in mathematics in college, taking the basic courses in differential
equations, advanced calculus, abstract algebra, linear algebra, topology, logic, probability and
statistics, real and complex analysis, etc., have a large number of options, not only in mathematics
and computer science but in an increasing variety of fields which utilize mathematics. Even when
companies recruit for jobs that have nothing to do with mathematics, they often encourage math
majors to apply, since they know that analytical skills will serve anyone well, whatever the job.

Mathematics majors who continue their studies will find that graduate education in
mathematics, in great contrast to that at lower levels, is the best in the world. Unfortunately, by
this time it's too late for most, and this preeminence in research doesn't filter down to lower
levels, due in good measure to the failure of American mathematicians to reach an audience wider
than the small number of specialists who read their research papers.

Excluding certain textbook authors, only a handful of mathematics writers have a lay
audience of more than a thousand. Given this sorry fact, it's perhaps not surprising that few
educated people will admit to being completely unacquainted with the names Shakespeare, Dante,
or Goethe, yet most will openly confess their ignorance of Gauss, Euler, or Laplace, in some sense
their mathematical analogues. (Newton doesn't count, since he's much more famous for his
contributions to physics than for his invention of calculus.)

Even at the graduate and research level, there are ominous signs. So many foreign students
come to do their graduate work here, and so few American students major in mathematics, that in
many departments American graduate students are a minority. In fact, of 739 doctorates in
mathematics awarded by American universities in 1986-87, slightly less than half, only 362,
were conferred on United States citizens.

If mathematics is important (and it certainly is), then so is mathematics education.
Mathematicians who don't deign to communicate their subject to a wider audience are a little like
multimillionaires who don't contribute anything to charity. Given the relatively low salaries of
many mathematicians, both failings might be overcome if multimillionaires supported
mathematicians who wrote for a popular audience. (Just a thought.)

One argument mathematicians cite for not writing for a larger audience is the esoteric nature
of their work. There's something to this, of course, but Martin Gardner, Douglas Hofstadter, and
Raymond Smullyan are three obvious counter-examples. In fact, some of the ideas discussed in



this book are quite sophisticated, yet the mathematical prerequisites for understanding them are
truly minimal: some facility with arithmetic and an understanding of fractions, decimals, and
percentages. It is almost always possible to present an intellectually honest and engaging account
of any field, using a minimum of technical apparatus. This is seldom done, however, since most
priesthoods (mathematicians included) are inclined to hide behind a wall of mystery and to
commune only with their fellow priests.

In short, there is an obvious connection between innumeracy and the poor mathematical
education received by so many people. Hence this jeremiad. Still, it's not the whole story, since
there are many quite numerate people who have had little formal schooling. More debilitating
mathematically than ineffective or insufficient education are psychological factors.

INNUMERACY AND THE TENDENCY TO PERSONALIZE

One important such factor is the impersonality of mathematics. Some people personalize events
excessively, resisting an external perspective, and since numbers and an impersonal view of the
world are intimately related, this resistance contributes to an almost willful innumeracy.

Quasi-mathematical questions arise naturally when one transcends one's self, family, and
friends. How many? How long ago? How far away? How fast? What links this to that? Which is more
likely? How do you integrate your projects with local, national, and international events? with
historical, biological, geological, and astronomical time scales?

People too firmly rooted to the center of their lives find such questions uncongenial at best,
quite distasteful at worst. Numbers and "science" have appeal for these people only if they're tied
to them personally. They're often attracted to New Age beliefs such as Tarot cards, the I Ching,
astrology and biorhythms, since these provide them with personally customized pronouncements.
Getting such people interested in a numerical or scientific fact for its own sake or because it's
intriguing or beautiful is almost impossible.

Though innumeracy may seem far removed from these people's real problems and
concerns—money, sex, family, friends—it affects them (and all of us) directly and in many ways.
If you walk down the main street of a resort town any summer night, for example, and see happy
people holding hands, eating ice-cream cones, laughing, etc., it's easy to begin to think that other
people are happier, more loving, more productive than you are, and so become unnecessarily
despondent.

Yet it is precisely on such occasions that people display their good attributes, whereas they
tend to hide and become "invisible" when they are depressed. We should all remember that our
impressions of others are usually filtered in this way, and that our sampling of people and their
moods is not random. It's beneficial to wonder occasionally what percentage of people you
encounter suffer from this or that disease or inadequacy.

It's natural sometimes to confuse a group of individuals with some ideal composite individual.
So many talents, so many different attractions, so much money, elegance, and beauty on display,
but—and it's a trivial observation—this multitude of desiderata is inevitably spread out among a



large group of people. Any given individual, no matter how brilliant or rich or attractive he or
she is, is going to have serious shortcomings. Excessive concern with oneself makes it difficult to
see this and thus can lead to depression as well as innumeracy.

Too many people, in my opinion, maintain a "Why me?" attitude toward their misfortunes.
You needn't be a mathematician to realize that there's something wrong statistically if most
people do this. It's like the innumerate high school principal who complains that most of his
students score below his school's median SAT score. Bad things happen periodically, and they're
going to happen to somebody. Why not you?

THE UBIQUITY OF FILTERING AND COINCIDENCE

Broadly understood, the study of filtering is nothing less than the study of psychology.
Which impressions are filtered out and which are permitted to take hold largely determines our
personality. More narrowly construed as the phenomenon whereby vivid and personalized
events are remembered and their incidence therefore overestimated, the so-called Jeane Dixon
effect often seems to lend support to bogus medical, diet, gambling, psychic, and
pseudoscientific claims. Unless one is almost viscerally aware of this psychological tendency
toward innumeracy, it is liable to bias our judgments.

As we've noted, a defense against this tendency is to look at bald numbers, to provide some
perspective. Remember that rarity in itself leads to publicity, making rare events appear
commonplace. Terrorist kidnappings and cyanide poisonings are given monumental coverage,
with profiles of the distraught families, etc., yet the number of deaths due to smoking is
roughly the equivalent of three fully loaded jumbo jets crashing each and every day of the year,
more than 300,000 Americans annually. AIDS, as tragic as it is, pales in worldwide comparison
to the more prosaic malaria, among other diseases. Alcohol abuse, which in this country is the
direct cause of 80,000 to 100,000 deaths per year and a contributing factor in an additional
100,000 deaths, is by a variety of measures considerably more costly than drug abuse. It's not
hard to think of other examples (famines and even genocides scandalously underreported), but
it's necessary to remind ourselves of them periodically to keep our heads above the snow of
media avalanches.

If one filters out banal and impersonal events, most of what's left are astounding
aberrations and coincidences, and one's mind begins to resemble the headlines of supermarket
tabloids.

Even people who have less restrictive filters and a good feel for numbers will note an
increasingly large number of coincidences, due in large measure to the number and complexity
of man-made conventions. Primitive man, in noticing the relatively few natural coincidences in
his environment, slowly developed the raw observational data out of which science evolved. The
natural world, however, does not offer immediate evidence for many such coincidences on its
surface (no calendars, maps, directories, or even names). But in recent years the plethora of
names and dates and addresses and organizations in a complicated world appears to have



triggered many people's inborn tendency to note coincidence and improbability, leading them to
postulate connections and forces where there are none, where there is only coincidence.

Our innate desire for meaning and pattern can lead us astray if we don't remind ourselves
of the ubiquity of coincidence, an ubiquity which is the consequence of our tendency to filter
out the banal and impersonal, of our increasingly convoluted world, and, as some of the earlier
examples showed, of the unexpected frequency of many kinds of coincidence. Belief in the
necessary or even probable significance of coincidences is a psychological remnant of our
simpler past. It constitutes a kind of psychological illusion to which innumerate people are
particularly prone.

The tendency to attribute meaning to phenomena governed only by chance is ubiquitous. A
good example is provided by regression to the mean, the tendency for an extreme value of a
random quantity whose values cluster around an average to be followed by a value closer to the
average or mean. Very intelligent people can be expected to have intelligent offspring, but in general
the offspring will not be as intelligent as the parents. A similar tendency toward the average or
mean holds for the children of very short parents, who are likely to be short, but not as short as
their parents. If I throw twenty darts at a target and manage to hit the bull's-eye eighteen times,
the next time I throw twenty darts, I probably won't do as well.

This phenomenon leads to nonsense when people attribute the regression to the mean as due to
some particular scientific law, rather than to the natural behavior of any random quantity. If a
beginning pilot makes a very good landing, it's likely that his next one will not be as impressive.
Likewise, if his landing is very bumpy, then, by chance alone, his next one will likely be better.
Psychologists Amos Tversky and Daniel Kahneman studied one such situation in which, after
good landings, pilots were praised, whereas, after bumpy landings, they were berated. The flight
instructors mistakenly attributed the pilots' deterioration to their praise of them, and likewise the
pilots' improvement to their criticism; both, however, were simply regressions to the more likely
mean performance. Because this dynamic is quite general, Tversky and Kahneman write,
"behavior is most likely to improve after punishment and to deteriorate after reward.
Consequently, the human condition is such that... one is most often rewarded for punishing
others, and most often punished for rewarding them." It's not necessarily the human condition, I
would hope, but a remediable innumeracy which results in this unfortunate tendency.

The sequel to a great movie is usually not as good as the original. The reason may not be
the greed of the movie industry in cashing in on the first film's popularity, but simply another
instance of regression to the mean. A great season by a baseball player in his prime will likely be
followed by a less impressive season. The same can be said of the novel after the best-seller, the
album that follows the gold record, or the proverbial sophomore jinx. Regression to the mean
is a widespread phenomenon, with instances just about everywhere you look. As mentioned in
Chapter 2, however, it should be carefully distinguished from the gambler's fallacy, to which it
bears a superficial resemblance.

Though chance fluctuations play a very large role in the price of a stock or even of the
market in general, especially in the short term, the price of a stock is not a completely random
walk, with a constant probability (P) of going up and a complementary probability (1-P) of
going down, independent of its past performance. There is some truth to so-called fundamental
analysis, which looks to the economic factors underlying a stock's value. Given that there is



some rough economic estimate of a stock's value, regression to the mean can sometimes be
used to justify a kind of contrarian strategy. Buy those stocks whose performance has been
relatively lackluster for the previous couple of years, since they're more likely to regress to their
mean and increase in price than are stocks which have performed better than their economic
fundamentals would suggest and are therefore likely to regress to their mean and decline in price.
A number of studies support this schematic strategy.

DECISIONS AND FRAMING QUESTIONS

Judy is thirty-three, unmarried, and quite assertive. A magna cum laude graduate, she
majored in political science in college and was deeply involved in campus social affairs,
especially in antidiscrimination and anti-nuclear issues. Which statement is more probable?

(a) Judy works as a bank teller.
(b) Judy works as a bank teller and is active in the feminist movement.
The answer, surprising to some, is that (a) is more probable than (b), since a single statement

is always more probable than a conjunction of two statements. That I will get heads when I flip
this coin is more probable than that I will get heads when I flip this coin and get a 6 when I roll that
die. If we have no direct evidence or theoretical support for a story, we find that detail and
vividness vary inversely with likelihood; the more vivid details there are to a story, the less likely
the story is to be true.

Getting back to Judy and her job at the bank, psychologically what may happen is that the
preamble causes people to confuse the conjunction of statements of alternative (b) ("She's a teller
and she's a feminist") with the conditional statement ("Given that she's a teller, she's probably
also a feminist"), and this latter statement seems more probable than alternative (a). But this, of
course, is not what (b) says.

Psychologists Tversky and Kahneman attribute the appeal of answer (b) to the way people
come to probability judgments in mundane situations. Rather than trying to decompose an
event into all its possible outcomes and then counting up the ones that share the characteristic in
question, they form representative mental models of the situation, in this case of someone like
Judy, and come to their conclusion by comparison with these models. Thus, it seems to many
people that answer (b) is more representative of someone with Judy's background than is answer
(a).

Many of the counter-intuitive results cited in this book are psychological tricks similar to
the above, which can induce temporary innumeracy in even the most numerate. In their
fascinating book Judgement under Uncertainty, Tversky and Kahneman describe a different
variety of the seemingly irrational innumeracy that characterizes many of our most critical
decisions. They ask people the following question: Imagine you are a general surrounded by an
overwhelming enemy force which will wipe out your 600-man army unless you take one of two
available escape routes. Your intelligence officers explain that if you take the first route you will



save 200 soldiers, whereas if you take the second route the probability is 1/3 that all 600 will make
it, and 2/3 that none will. Which route do you take?

Most people (three out of four) choose the first route, since 200 lives can definitely be
saved that way, whereas the probability is 2/3 that the second route will result in even more
deaths.

So far, so good. But what about the following? Again, you're a general faced with a
decision between two escape routes. If you take the first one, you're told, 400 of your soldiers
will die. If you choose the second route, the probability is 1/3 that none of your soldiers will die,
and 2/3 that all 600 will die. Which route do you take?

Most people (four out of five) faced with this choice opt for the second route, reasoning
that the first route will lead to 400 deaths, while there's at least a probability of 1/3 that
everyone will get out okay if they go for the second route.

The two questions are identical, of course, and the differing responses are a function of
how the question is framed, whether in terms of lives saved or of lives lost.

Another example from Tversky and Kahneman: Choose between a sure $30,000 or an 80
percent chance of winning $40,000 and a 20 percent chance of winning nothing. Most people
will take the $30,000 even though the average expected gain in the latter choice is $32,000
(40,000 x .8). What if the choices are either a sure loss of $30,000 or an 80 percent chance of
losing $40,000 and a 20 percent chance of losing nothing? Here most people will take the chance
of losing $40,000 in order to have a chance of avoiding any loss, even though the average
expected loss in the latter choice is $32,000 (40,000 x.8). Tversky and Kahneman conclude
that people tend to avoid risk when seeking gains, but choose risk to avoid losses.

Of course, we needn't resort to such clever examples to realize that how a question or
statement is framed plays a big role in how someone responds to it. If you asked an average
taxpayer how he feels about a 6 percent utility increase, he'd probably be amenable. If you
asked his reaction to a $91 million hike in utility bills, he probably wouldn't be. Saying that
someone scored in the middle third of his class is more impressive than saying that he scored in
the 37th percentile (better than 37 percent of his peers).

MATH ANXIETY

A more common source of innumeracy than psychological illusions is what Sheila Tobias
calls math anxiety. In Overcoming Math Anxiety she describes the block many people
(especially women) have to any kind of mathematics, even arithmetic. The same people who can
understand the subtlest emotional nuances in conversation, the most convoluted plots in
literature, and the most intricate aspects of a legal case can't seem to grasp the most basic
elements of a mathematical demonstration.

They seem to have no mathematical frame of reference and no basic understandings on
which to build. They're afraid. They've been intimidated by officious and sometimes sexist
teachers and others who may themselves suffer from math anxiety. The infamous word



problems terrify them, and they're convinced that they're dumb. They feel that there are
mathematical minds and nonmathematical minds, and that the former always come up with
answers instantaneously whereas the latter are helpless and hopeless.

Not surprisingly, these feelings constitute a formidable block to numeracy. There are things to
be done for those who suffer from them, however. One simple technique which works surprisingly
well is to explain the problem clearly to someone else; if a person can sit still for this, he or she may
think about the problem long enough to realize that additional thought might bring results. Other
techniques may be: to use smaller numbers; to examine related but easier problems or sometimes
related but more general problems; to collect information relevant to the problem; to work
backwards from the solution; to draw pictures and diagrams; to compare the problem or parts of it to
problems you do understand; and most important of all, to study as many different problems and
examples as possible. The truism that one learns how to read by reading and how to write by
writing extends to solving mathematical problems (and even to constructing mathematical proofs).

In writing this book, I've come to understand a way in which I (and probably mathematicians
in general) contribute unintentionally to innumeracy. I have a difficult time writing at extended
length about anything. Either my mathematical training or my natural temperament causes me
to distill the crucial points and not to dwell (I want to write "dither") over side issues or contexts
or biographical detail. The result, I think, is clean exposition, which can nevertheless be
intimidating to people who expect a more leisurely approach. The solution is for a variety of people
to write about mathematics. As has been said about many subjects, mathematics is too important to
be left to the mathematicians.

Different from and much harder to deal with than math anxiety is the extreme intellectual
lethargy which affects a small but growing number of students, who seem to be so lacking in
mental discipline or motivation that nothing can get through to them. Obsessive-compulsive sorts
can be loosened up and people suffering from math anxiety can be taught ways to allay their
fears, but what about students who don't care enough to focus any of their energy on intellectual
matters? You remonstrate: "The answer's not X but Y. You forgot to take account of this or that."
And the response is a blank stare or a flat "Oh, yeah." Their problems are an order of magnitude
more serious than math anxiety.

ROMANTIC MISCONCEPTIONS

Romantic misconceptions about the nature of mathematics lead to an intellectual
environment hospitable to and even encouraging of poor mathematical education and
psychological distaste for the subject and lie at the base of much innumeracy. Rousseau's
disparagement of the English as "a nation of shopkeepers" persists as a belief that a concern with
numbers and details numbs one to the big questions, to the grandeur of nature. Mathematics is
often taken to be mechanical, the work of low-level technicians who will report to the rest of us
anything we absolutely must know. Alternatively, mathematics is sometimes endowed with a
coercive character which is somehow capable of determining our future. Attitudes such as these
certainly predispose one to innumeracy. Let's examine some of them.



Mathematics is thought to be cold, since it deals with abstraction and not with flesh and blood.
In a sense, of course, this is true. Even Bertrand Russell termed the beauty of pure mathematics
"cold and austere," and it is precisely this cold and austere beauty that initially attracts
mathematicians to the subject, since most are essentially Platonists and conceive of mathematical
objects as existing in some abstract, ideal realm.

Still, pure mathematics is only part of the story; almost equally important is the interplay
between these ideal Platonic forms (or whatever they are) and their possible interpretation in the
real world, and in this extended sense mathematics is not cold. Recall that mathematics as simple
as "1 + 1 = 2" can still be thoughtlessly misapplied: If 1 cup of popcorn is added to 1 cup of water,
we do not end up with 2 cups of soggy popcorn. In trivial cases as well as in difficult ones,
mathematical applications can be a tricky affair, requiring as much human warmth and nuance as
any other endeavor.

Even when mathematics is at its purest and coldest, its pursuit is often quite hot. Like any
other scientists, mathematicians are motivated by a complex of emotions including healthy doses of
jealousy, arrogance, and competitiveness. Research mathematicians attack their problems with
an intensity and compulsiveness which seem related to the purity of their research. A strong streak
of romanticism runs through mathematics, manifesting itself most clearly in the most
fundamental areas of mathematics, number theory and logic. This romanticism extends at least
as far back as the mystical Pythagoras, who believed that the secret of understanding the world
lay in understanding number; it found expression in the numerology and Cabala of the Middle
Ages, and persists (in a nonsuperstitious form) in the Platonism of the modern logician Kurt
Gödel and others. The existence of this romantic tendency constitutes at least a small part of
the emotional makeup of most mathematicians, and is perhaps surprising to those who think of
mathematicians as cold rationalists.

Another widespread misconception is that numbers depersonalize or somehow diminish
individuality. There is of course a legitimate concern about reducing complicated phenomena to
simple numerical scales or statistics. Fancy mathematical terms and reams of statistical
correlations and computer printouts do not in themselves produce understanding, social
scientists' claims notwithstanding. Reducing a complex intelligence or the economy to
numbers on a scale, whether I.Q. or GNP, is myopic at best and many times simply ludicrous.

That said, objections to being identified for special purposes by number (social security,
credit cards, etc.) seem silly. If anything, a number in these contexts enhances individuality; no
two people have the same credit-card number, for example, whereas many have similar names
or personality traits or socioeconomic profiles. (I personally use my middle name—John Allen
Paulos—to keep the masses from confusing me with the Pope.)

I'm always amused by commercials for banks which tout their personalized service, which
service amounts to a poorly trained and badly paid cashier saying "Good morning" and then
promptly fouling up your transaction. I'd rather go to a machine which knows me by some code
word but on whose operating programs a team of software writers has painstakingly worked for
months.

One objection I do have to identification numbers is their excessive length. An application
of the multiplication principle shows that a nine-digit number or a six-letter sequence is of
more than adequate length to distinguish every person in the country (109 is a billion, while 266



is more than 300 million). Why do department stores or suburban water companies find it
necessary to assign account numbers with twenty or more symbols?

Writing of numbers and individuation reminds me of companies which will name a star after
anyone who pays a $35 fee. So that the companies can wrap themselves in some sort of official
cloak, the names are recorded in books which are registered in the Library of Congress. The
companies generally advertise around Valentine's Day, and judging from their longevity they
must be doing a fairly good business. A related and equally silly business idea I had was to
"officially" associate a number with anyone who pays a $35 fee. A certificate would be sent to
subscribers and a book with their names and cosmic numbers would be registered in the Library
of Congress. There might even be a sliding scale, with perfect numbers selling at a premium and
prime numbers going for more than nonperfect composite numbers, etc. I would get rich selling
numbers.

Yet another misperception people have of mathematics is that it is limiting, and somehow
opposed to human freedom. If they accept certain statements and then are shown that some other
unpleasant statements follow from them, they associate the unpleasantness of the conclusions with
the vehicle of their expression.

In this very weak sense, of course, mathematics is constraining, as is all reality, but it has no
independent power to coerce. If one accepts the premises and definitions, one must accept what
follows from them, but one can frequently reject premises or refine definitions or choose a
different mathematical approach. In this sense, mathematics is just the opposite of constraining; it
is empowering, and at the service of anyone who cares to use it.

Consider the following example, which illustrates the way we use mathematics but are not
bound by it. Two men bet on a series of coin flips. They agree that the first to win six such flips
will be awarded $100. The game, however, is interrupted after only eight flips, with the first man
leading 5 to 3. The question is: How should the pot be divided? One might say that the first man
should be awarded the full $100, because the bet was all or nothing and he was leading. Or one
could reason instead that the first man should receive 5/8 of the pot and the other one the remaining
3/8 because the score was 5 to 3. Alternatively, it might be argued that because the probability of
the first man's going on to win can be computed to be 7/8 (the only way the second man could have
won is by winning three flips in a row, a feat with probability 1/8 = l/2 x 1/2 x 1/2), the first man
should receive 7/8 of the pot to 1/8 for the second man. (This incidentally was Pascal's solution to
this, one of the first problems in probability theory.) Rationales for still other ways to apportion
the money are possible.

The point is that the criteria for deciding on any one of these divisions are
nonmathematical. Mathematics can help determine the consequences of our assumptions and
values, but we, not some mathematical divinity, are the origin of these assumptions and values.

Nevertheless, mathematics is often seen as a spiritless affair. Many people believe that
determining the truth of any mathematical statement is merely a matter of mechanically
plugging into some algorithm or recipe which will eventually yield a yes or a no answer, and
that given a reasonable collection of basic axioms, every mathematical statement is either
provable or unprovable. Mathematics in this view is cut-and-dried and calls for nothing so
much as mastery of the requisite algorithms, and unlimited patience.



The Austrian-American logician Kurt Gödel brilliantly refuted these facile assumptions by
demonstrating that any system of mathematics, no matter how elaborate, will of necessity
contain statements which can be neither proved nor disproved within the system. This and
related results by logicians Alonzo Church, Alan Turing, and others have deepened our
understanding of mathematics and its limitations. Given our concerns here, however, it's sufficient
to note that not even theoretically is mathematics mechanical or complete.

Though related to these abstract considerations, the mistaken belief in the mechanical nature
of mathematics generally takes more prosaic forms. Mathematics is often viewed as a subject for
technicians, and mathematical talent is confused with rote skills, elementary programming
ability, or speed of calculation. In a curious way, many people simultaneously exalt and dismiss
mathematicians and scientists as impractical whizzes. Consequently, we frequently find senior
mathematical, engineering, and scientific people ardently wooed by industry and then subordinated
to newly minted M.B.A.s and accountants.

One other prejudice people have about mathematics is that its study somehow diminishes
one's feeling for nature and the "big" questions. Since this position is frequently expressed (for
example, by Whitman at the beginning of this chapter), but rarely argued for, it's difficult to
refute. It makes as much sense as believing that a technical knowledge of molecular biology will
render a person unappreciative of the mysteries and complexities of life. Too often, this concern for
the big picture is simply obscurantist and is put forward by people who prefer vagueness and
mystery to (partial) answers. Vagueness is at times necessary and mystery is never in short
supply, but I don't think they're anything to worship. Genuine science and mathematical
precision are more intriguing than are the "facts" published in supermarket tabloids or a
romantic innumeracy which fosters credulity, stunts skepticism, and dulls one to real
imponderables.

DIGRESSION: A LOGARITHMIC SAFETY INDEX

Several years ago, supermarkets began to use unit pricing (cents per pound, per fluid
ounce, etc.) to give consumers a uniform scale with which to measure value. If the price of dog
food and cake mix can be rationalized, why can't some sort of rough "safety index" be devised
which allows us to gauge how safe various activities, procedures, and illnesses are? What I'm
suggesting is a kind of Richter scale which the media could use as a shorthand for indicating
degrees of risk.

Like the Richter scale, the proposed index would be logarithmic, so what follows is a little
detour to review for the innumerate those dreaded monsters from high school algebra:
logarithms. The logarithm of a number is simply the power to which 10 must be raised to equal
the number in question. The logarithm of 100 is 2 because 102 = 100; the logarithm of 1,000 is 3
because 103 = 1,000; and the logarithm of 10,000 is 4 because 104 = 10,000. For numbers
between powers of 10, the logarithm is between the two nearest powers of 10. For example, the
logarithm of 700 is between 2, the logarithm of 100, and 3, the logarithm of 1,000; it happens to
be about 2.8.



The safety index would work as follows. Consider some activity which results in a certain
number of deaths per year; say, automobile driving: one American in 5,300 dies each year due
to a car crash. The safety index associated with automobile driving is thus a relatively low 3.7, the
logarithm of 5,300. More generally, if one person out of X dies as a result of some given activity
each year, the safety index for that activity is simply the logarithm of X. Thus, the higher the
safety index, the safer the activity in question.

(Since people and the media are sometimes more interested in danger than in safety, an
alternative approach might be to define a danger index equal to 10 minus the safety index. A 10
on such a danger index would then correspond to a safety index of 0—certain death; and a low
danger index of 3 would be equivalent to a high safety index of 7, or one chance in 107 of dying.)

According to the Centers for Disease Control, smoking results in an estimated 300,000
premature deaths annually in the United States, which is equivalent to one American in 800 dying
each year due to heart, lung, and other diseases caused by smoking. The logarithm of 800 is 2.9, and
thus the safety index for smoking is even lower than that for driving. A more graphic way to
describe the number of such preventable deaths is to note that each year seven times as many
people die from cigarette smoking as were killed in the entire war in Vietnam.

Automobile driving and smoking have safety indices of 3.7 and 2.9, respectively. Contrast
these small values with the safety index of being kidnapped. It's estimated that fewer than 50
American children are kidnapped each year by strangers, and the incidence of kidnapping is thus
about one in 5 million, resulting in a safety index of 6.7. Remember that the bigger the number,
the smaller the risk, and that for every unit increase in the safety index, the risk declines by a
factor of 10.

The virtue of such a coarse logarithmic safety scale is that it provides us, and particularly
the media, with an order-of-magnitude estimate of the risks associated with various activities,
illnesses, and procedures. There is a possible problem, however, since the index doesn't clearly
distinguish incidence from likelihood. An activity may be very dangerous but quite rare, and
thus would result in few deaths and have a high safety index. For example, few people die as a
result of high-wire acrobatics between skyscrapers, an activity which is nevertheless not safe.

A slight refinement must therefore be made in the index, by considering only those people
who are likely to engage in the activity in question. If one out of every X of them dies due to
the activity, then the safety index of the activity would be the logarithm of X. On this basis, the
safety index of high-wire acrobatics between skyscrapers might be a very low 2 (estimating that
one out of every 100 such daredevil acrobats doesn't make it across). Likewise, playing Russian
roulette each year (one chamber in six containing a bullet) has a safety index of less than 1,
approximately 0.8.

Activities or illnesses whose safety indices are greater than 6 should be considered quite
safe, being equivalent to less than one chance in a million per year. Anything with a safety
index of less than 4 should be considered warily, being equivalent to a more than one chance
per 10,000 per year. Publicity, of course, tends to obscure these numbers, but like the Surgeon
General's warning on cigarette packages, the figures would eventually begin to filter into the public
consciousness. Victim-oriented reporting would have a less misleading impact if the safety index
were kept firmly in mind. Isolated but vivid tragedies involving a few people should not blind us to
the fact that myriad prosaic activities may involve a much higher degree of risk.



Let's look at a few more examples. The 12,000 American deaths due to heart and circulatory
disease each week translate into an annual rate of one death per 380, for a safety index of 2.6. (If
one is a nonsmoker, the safety index for heart and circulatory diseases is considerably higher, but
we're only interested in shorthand approximations here.) The safety index for cancer is a slightly
better 2.7. An activity in the marginal area is bike riding: one American in 96,000 dies each year
in a bicycle crash, for a safety index of about 5 (actually, somewhat lower, since relatively few
people ride bikes). In the rare category, it's estimated that one American in 2,000,000 is killed by
lightning, for a safety index of 6.3; whereas one in 6,000,000 dies from a bee sting each year, for a
safety index of 6.8.

The safety index varies over time, death from influenza and pneumonia going from a safety
index of approximately 2.7 in 1900 to approximately 3.7 in 1980. Over the same period, the risk of
death from tuberculosis went from 2.7 to approximately 5.8. Variations between countries are to
be expected— the safety index for homicide being approximately 4 in the United States and
between 6 and 7 in Great Britain, whereas malaria's index is orders of magnitude lower in most
of the world than it is in the United States. Comparable economies of expression can be obtained by
comparing the high safety index associated with nuclear power with the relatively low safety
index for burning coal.

In addition to the ready perspective it offers on relative risk, the safety index underscores the
obvious fact that every activity carries some risk. It provides the rough answer to the crucial
question: How much?

Whatever the merits of such a safety index, I think the establishment of statistical ombudsmen
by television networks, news magazines, and major newspapers would be a welcome and effective
step in combating innumeracy in the media. An ombudsman would scan the news stories, research
whatever statistics are mentioned, try to see that they are at least internally consistent, and
probe most carefully into a priori implausible claims. Perhaps a regular feature similar to
William Safire's New York Times column on usage might consider the worst innumeracies of the
week or month. It would have to be quite entertainingly written, however, since, though there's
happily a small army of readers interested in verbal niceties, relatively few are interested in
similar but often more important numerical nuances.

These matters are not merely academic, and there is a direct way in which the mass media's
predilection for dramatic reporting leads to extreme politics and even pseudoscience. Since fringe
politicians and scientists are generally more intriguing than mainstream ones, they garner a
disproportionate share of publicity and thus seem more representative and significant than they
otherwise would. Furthermore, since perceptions tend to become realities, the natural tendency of
the mass media to accentuate the anomalous, combined with an innumerate society's taste for such
extremes, could conceivably have quite dire consequences.



5 Statistics, Trade-Offs, and Society

There was once a state legislator in Wisconsin who objected to the introduction of daylight
saving time despite all the good arguments for it. He maintained sagely that there is always a
trade-off involved in the adoption of any policy, and that if daylight saving time were
instituted, curtains and other fabrics would fade more quickly.

Sixty-seven percent of the doctors surveyed preferred X to Y. (Jones couldn't be persuaded.)
————

It's been estimated that, because of the exponential growth of the world's population, between
10 and 20 percent of all the human beings who have ever lived are alive now. If this is so, does this
mean that there isn't enough statistical evidence to conclusively reject the hypothesis of
immortality?

PRIORITIES—INDIVIDUAL VS. SOCIETAL

This chapter will concentrate on the harmful social effects of innumeracy, with particular
emphasis on the conflict between society and the individual. Most of the examples consider some
form of tradeoff or balancing of conflicting concerns, and will show how innumeracy contributes to
the relative invisibility of these trade-offs, or sometimes, as in the case of the Wisconsin legislator
above, to seeing them where they aren't.

Let's examine a preliminary and relevant probability oddity, whose discovery is due to
statistician Bradley Efron. Imagine four dice, A, B, C, and D, strangely numbered as follows: A has
4 on four faces and 0 on two faces; B has 3s on all six faces; C has four faces with 2 and two faces
with 6; and D has 5 on three faces and 1 on three faces.

If die A is rolled against die B, die A will win— by showing a higher number—two-thirds of the
time; similarly, if die B is rolled against die C, B will win two-thirds of the time; if die C is rolled
against die D, it will win two-thirds of the time; nevertheless, and here's the punch line, if die D
is rolled against die A, it will win two-thirds of the time. A beats B beats C beats D beats A, all
two-thirds of the time. You might even profit from this by challenging someone to choose
whatever die he or she wanted, and you could then choose a die which would beat it two-thirds
of the time. If they choose die B, you choose A; if they choose A, you choose D; and so on.



That die C beats die D may require some explanation. Half of the time, a 1 will turn up on
die D, in which case die C will certainly win. The other half of the time, a 5 will turn up on die
D, in which case die C will win one-third of the time. Thus, since C can win in these two
different ways, it beats D exactly 1/2 + (l/2 x 1/3) = 2/3 of the time. A similar argument can be
used to show that die D beats die A two-thirds of the time. This kind of nontransitivity (where
X beats Y and Y beats Z and Z beats W, but W nevertheless beats X) is at the base of most
voting paradoxes, from the Marquis de Condorcet in the eighteenth century to Kenneth
Arrow in the twentieth.

The possibility of social irrationality resting on a base of individual rationality is
suggested by a slight variant of Condorcet's original example. In it there are three candidates
for public office, whom I'll call Dukakis, Gore, and Jackson, to commemorate the 1988
Democratic primary battles. Assume that one-third of the electorate prefers Dukakis to Gore to
Jackson, that another one-third prefers Gore to Jackson to Dukakis, and that the last one-third
prefers Jackson to Dukakis to Gore. So far, so good.

But if we examine the possible two-man races, a paradox appears. Dukakis will boast that
two-thirds of the electorate prefer him to Gore, whereupon Jackson will respond that
two-thirds of the electorate prefer him to Dukakis. Finally, Gore will counter by noting that
two-thirds of the electorate prefer him to Jackson. If societal preferences are determined by
majority vote, "society" prefers Dukakis over Gore, Gore over Jackson, and Jackson over
Dukakis. Thus, even if the preferences of all the individual voters are rational (i.e.,
transitive— whenever a voter prefers X to Y and Y to Z, then that voter prefers X to Z), it
doesn't necessarily follow that the societal preferences determined by majority rule are
transitive, too.

Of course, in real life, things can get considerably more complex. Mort Sahl remarked
about the 1980 election, for example, that people weren't so much voting for Reagan as they
were voting against Carter, and that if Reagan had run unopposed he would have lost. (I don't
know how to model that situation.)

One should not get the mistaken impression that Condorcet's paradox and Sahl's joke are
equally unrealistic. The economist Kenneth Arrow has proved a very powerful generalization
which shows that something like the above situation characterizes every voting system.
Specifically, he demonstrated that there is never a way to derive societal preferences from
individual preferences that can be absolutely guaranteed to satisfy these four minimal
conditions: the societal preferences must be transitive; the preferences (individual and societal)
must be restricted to available alternatives; if every individual prefers X to Y, then the societal
preference must be for X over Y; and no individual's preferences automatically determine the
societal preferences.

LAISSEZ-FAIRE: ADAM SMITH OR THOMAS HOBBES

A different sort of conflict between the individual and society is revealed in a dilemma
devised by the logician Robert Wolf that is related to the more famous prisoner's dilemma, to



which we'll return shortly. Both demonstrate that acting in one's self-interest does not always
best serve one's self-interest.

Imagine that you and twenty casual acquaintances are in a room together, having been
brought there by an eccentric philanthropist. None of you can communicate in any way with
one another, and you're each given the choice of either pressing a small button in front of
you or not.

If all of you refrain from pressing the button, you'll each receive $10,000 from the
philanthropist. But if at least one of you presses the button, those of the group who press the
button will receive $3,000 and those who refrain from pressing the button will receive nothing.
The question is, do you press the button for a sure $3,000, or refrain and hope that everybody
else in the group does the same, so that you each get $10,000.

Whatever your decision, one can vary the stakes or the number of people involved so as to
induce you to reverse your decision. If you decided to press the button, you probably would
have reversed your decision if the stakes had been $100,000 vs. $3,000. If you refrained from
pressing, you would probably have reversed that decision if the stakes had been $10,000 vs.
$9,500.

There are other ways of raising the stakes. Replace the eccentric philanthropist with a
powerful sadist. If no member of the group presses the button, he'll allow each of you to leave
safely. However, if some of you do press the button, the ones who do will be forced by the sadist
to play Russian roulette, with a 95 percent chance of survival, while the ones who don't will be
killed outright. Do you press the button and take the 95 percent chance of survival, and assume
the cost of indirectly leading to the deaths of others, or do you resist your fear and not press
the button and hope that no one else's fear gets the better of him?

Wolf's dilemma often arises in situations where we fear we're going to be left behind if we
don't watch out for ourselves.

Now consider the case of two women who must make a brief, hurried transaction (let's
suppose they're drug traffickers). The women exchange filled brown-paper bags on a street
corner and depart quickly before checking the contents of the bag each has received. Before the
meeting, each has the same option: to put in her bag the item of worth which the other wants
(the cooperative option) or to fill it with shredded newspaper (the individualist option). If they
cooperate with each other, each will receive what she wants, but at a fair cost. If A fills her
bag with shredded newspaper and B doesn't, A will get what she wants at no cost and B will
be duped. If they both fill their bags with shredded newspaper, neither will get what she
wants, but neither will be duped.

The best outcome for the women as a pair is for them to cooperate with each other. A,
however, can reason as follows: If B takes the cooperative option, I can get what I want at no
cost to me by taking the individualist option. On the other hand, if B takes the individualist
option, at least I won't be duped if I do, too. Thus, regardless of what B does, I'm better off if I
take the individualist alternative and give her a bag full of newspaper. B can, of course, reason
in the same way, and they're both likely to end up exchanging worthless bags of shredded
newspaper.

A similar situation can arise in legitimate business transactions or, indeed, in almost any
sort of exchange.



The prisoner's dilemma owes its name to a scenario, formally identical to the one above,
wherein two men suspected of a major crime are apprehended in the course of committing some
minor offense. They're separated and interrogated, and each is given the choice of confessing
to the major crime and implicating his partner or remaining silent. If they both remain silent,
they'll each get only one year in prison. If one confesses and the other doesn't, the one who
confesses will be rewarded by being let go, while the other one will get a five-year term. If they
both confess, they can both expect to spend three years in prison. The cooperative option is to
remain silent, while the individualist option is to confess.

The dilemma, again, is that what's best for them as a pair, to remain silent and spend a year in
prison, leaves each of them open to the worst possibility, being a patsy and spending five years
in prison. As a result, they'll probably both confess and both spend three years in prison.

So what? The appeal of the dilemma has nothing to do, of course, with any interest we might
have in women drug traffickers or in the criminal justice system. Rather, it provides the logical
skeleton for many situations we face in everyday life. Whether we're businessmen in a
competitive market or spouses in a marriage or superpowers in an arms race, our choices can
often be phrased in terms of the prisoner's dilemma. There isn't always a right answer, but the
parties involved will be better off as a pair if each resists the temptation to double-cross the
other and instead cooperates with or remains loyal to him or her. If both parties pursue their own
interests exclusively, the outcome is worse than if both cooperate. Adam Smith's invisible hand
ensuring that individual pursuits bring about group well-being is in these situations quite
paralyzed.

A somewhat different situation is that of two authors who must publicly review each other's
book. If they appeal to the same limited audience, there is a certain payoff to panning the other's
book while one's own book is praised, and this individual payoff is greater than that resulting
from mutual praise, which in turn is greater than a mutual panning. Thus, the choice of whether
to praise or to pan is something of a prisoner's dilemma. (I say "something of" because there should
be more weighty considerations, such as the merit of the books in question.)

There is an extensive literature on the subject of prisoner's dilemmas. The two-party prisoner's
dilemma can be extended to a situation where there are many people, each having the choice
whether to make a minuscule contribution to the public good or a massive one to his own private
gain. This many party prisoner's dilemma is useful in modeling situations where the economic
value of "intangibles" such as clean water, air, and space is an issue.

In another variation, political scientist Robert Axelrod has studied the iterated prisoner's
dilemma situation wherein our two women drug traffickers (or businessmen or spouses or
superpowers or whatever) meet again and again to make their transaction. Here there is a very
compelling reason to cooperate with and not try to double-cross the other party: you're probably
going to have to do business with him or her again.

Since, to a considerable extent, almost all social transactions have an element of the prisoner's
dilemma in them, the character of a society is reflected in which such transactions lead to
cooperation between parties and which don't. If the members of a particular "society" never
behave cooperatively, their lives are likely to be, in Thomas Hobbes's words, "solitary, poor,
nasty, brutish and short."



BIRTHDAYS, DEATH DAYS, AND ESP

Probability theory began with gambling problems in the seventeenth century, and something
of the gaming flavor and appeal clings to it to this day. Statistics began in the same century with
the compilation of mortuary tables, and something of its origins sticks to it as well. Descriptive
statistics, the oldest part of the subject and the part with which people are most familiar, is at
times (though not always) a dreary discipline, with its ceaseless droning about percentiles,
averages, and standard deviations. The theoretically more interesting field of inferential statistics
uses probability theory to make predictions, to estimate important characteristics of a population,
and to test the validity of hypotheses.

The latter notion—statistical testing of hypotheses—is simple in principle. You make an
assumption (often, forbiddingly termed the null hypothesis), design and perform an experiment,
then calculate to see if the results of the experiment are sufficiently probable, given the
assumption. If they aren't, you throw out the assumption, sometimes provisionally accepting an
alternative hypothesis. In this sense, statistics is to probability as engineering is to physics—an
applied science based on a more intellectually stimulating foundational discipline.

Consider this example, in which the unexpected outcome of a simple statistical test is
warrant enough to reject a common and seemingly obvious hypothesis: that people's birthdays and
death days have no relation to each other. Specifically, it's natural to assume that approximately 25
percent of the deaths in a given community will occur within a three-month period following the
decedents' birthdays (and 75 percent during the other nine months).

Surprisingly, however, a random sample of 747 death notices published in Salt Lake City,
Utah, newspapers during 1977 indicated that 46 percent of the decedents surveyed died within
the three-month period following their birthdays. Given the null hypothesis in question, that
approximately 25 percent of the decedents would have died in the three-month interval after their
birthdays, the probability that 46 percent or more would die during these intervals can be
computed to be so tiny as to be practically zero. (We must consider the alternative hypothesis
to be that 46 percent or more would die, and not that exactly 46 percent would die. Why?)

Thus, we can reject the null hypothesis and tentatively accept that, for whatever reason,
people do seem to wait until their birthdays to die. Whether this is due to the desire to achieve
another milestone or to the trauma of the birthday ("Oh, my God, I'm ninety-two!"), it seems
clear that a person's psychological state is a factor affecting when he will die. It would be
interesting to see this study replicated in a different city. My guess is that the phenomenon is
more pronounced among very old people, for whom a last birthday may be the only kind of
significant achievement within reach.

To illustrate the important binomial probability model, and to provide a numerical example
of a statistical test, imagine the following miniature test for ESP. (This is one of the passages I
mentioned that may be easily ignored.) Assume that one of three possible symbols chosen at
random is placed under a piece of cardboard and the subject is asked to identify it. Over the
course of twenty-five such trials, the subject correctly identifies the symbol ten times. Is this
enough evidence to warrant rejecting an assumption that the subject does not have ESP?



The answer lies in determining the probability of doing this well or better by chance. The
probability of making exactly ten correct guesses by chance is (1/3)10 (the probability of
answering the first ten questions correctly) x (2/3)15 (the probability of answering the next fifteen
questions incorrectly) x the number of different ten-question collections of the
twenty-five-question test there are. This latter factor is needed, since we're interested in the
probability that ten questions are answered correctly, not necessarily the first ten. Any collection
of ten correct responses and fifteen incorrect responses is acceptable and has the same
probability, (1/3)10 x (2/3)15.

Since the number of ways of choosing ten out of twenty-five is 3,628,800 [(25 x 24 x 23 . . .
17 x 16)7(10 x 9 x 8 x . . . 2 x 1)], the probability of guessing correctly some ten out of
twenty-five is 3,628,800 x (1/3)10 x (2/3)15. Similar calculations can be performed for eleven,
twelve, thirteen, up to twenty-five correct responses out of twenty-five, and if these probabilities
are added up, we get the probability of guessing at least ten out of twenty-five by
chance—about 30 percent. This probability is not even close to being sufficiently low to
warrant rejecting our assumption of no ESP. (Sometimes the outcomes are more difficult to
dismiss probabilistically, but in these cases there have always been flaws in the experimental
design which have provided the subject with cues.)

TYPE I AND TYPE II ERRORS:
FROM POLITICS TO PASCAL'S WAGER

One more example of a statistical test. Suppose I hypothesize that at least 15 percent of
the cars in a certain region are Corvettes, and upon watching one thousand cars go by
representative intersections in the region note only eighty Corvettes among them. Using
probability theory, I calculate that, given my assumption, the likelihood of this result is well
below 5 percent, a commonly used "level of significance." Therefore I reject my hypothesis that
15 percent of the cars in the region are Corvettes.

There are two sorts of errors that can be made in applying this or any statistical test;
they're called, imaginatively enough, Type I and Type II errors. A Type I error occurs when a
true hypothesis is rejected, and a Type II error occurs when a false hypothesis is accepted.
Thus, if a large number of Corvettes from a car show drove through the region and we therefore
accepted the false assumption that at least 15 percent of the cars in the region were Corvettes,
we would be making a Type II error. On the other hand, if we didn't realize that most of the
Corvettes in the region weren't driven but were kept in garages, then in rejecting the true
assumption we would be making a Type I error.

The distinction can also be applied less formally. When money is being distributed, the
stereotypical liberal tries especially hard to avoid Type I errors (the deserving not receiving
their share), whereas the stereotypical conservative is more concerned with avoiding Type II
errors (the undeserving receiving more than their share). When punishment is being meted
out, the stereotypical conservative is more concerned with avoiding Type I errors (the deserving



or guilty not receiving their due), whereas the stereotypical liberal worries more about avoiding
Type II errors (the undeserving or innocent receiving undue punishment).

Of course, there are always people who will object to the strictness of the Food and Drug
Administration in not releasing drug X soon enough to prevent suffering, and also complain
loudly when drug Y is released prematurely and causes severe complications. Like the FDA,
which must evaluate the relative probabilities of a Type II error (okaying a bad drug) and a Type I
error (not okaying a good drug), we must constantly evaluate analogous probabilities for ourselves.
Should we sell the rising stock option and risk losing out on its further ascent, or hold on to it and
risk its decline and the loss of our premium? Should we operate, or manage medically? Should
Henry ask Myrtle out and risk her saying no, or should he not and keep his peace of mind but not
learn that she would have said yes?

Similar considerations apply to the manufacturing process. Often, after some crucial bit of
machinery breaks down because of bad parts, or after some unusually unreliable string of items
(firecrackers, cans of soup, computer chips, condoms) comes to light, there are calls for new controls
to ensure that no more defectives are manufactured. This sounds reasonable, but in most cases it's
simply impossible or, what amounts to the same thing, prohibitively expensive. There are
quality-control checks whereby samples of each batch of manufactured goods are tested to ensure
that there are no or very few defectives in the sample, but not every item is tested (or even
testable).

There's almost always a trade-off between quality and price, between Type II errors (accepting
a sample with too many defectives) and Type I errors (rejecting a sample with very few defectives).
Moreover, if this trade-off is not acknowledged, there is a tendency to deny or cover up the
inevitable defective items, which makes the job of quality control that much more difficult.
Apropos of this is the proposed Strategic Defense Initiative, whose computer software, satellites,
mirrors, etc., would be so awesomely complex that it takes a kind of innumerate naivete to
believe it will work without bankrupting the treasury.

The Strategic Defense Initiative brings thoughts of destruction and salvation, and even
here the notion of trade-offs can play a useful role. Pascal's wager on God's existence, for
example, can be cast as a choice between the relative probabilities and consequences of Type I
and Type II errors. Should we accept God and act accordingly and risk a Type II error (He
doesn't exist), or should we reject God and act accordingly and risk a Type I error (He does
exist). Of course, there are assumptions underlying these phrases which are invalid or
meaningless without clarification. Still, the point is that all kinds of decisions can be cast into
this framework and call for the informal evaluation of probabilities. There is no such thing as a
free lunch, and even if there were, there'd be no guarantee against indigestion.

POLLING WITH CONFIDENCE

Estimating characteristics of a population, such as the percentage who favor a certain
candidate or a particular brand of dog food, is, like hypothesis testing, simple in principle. One



selects a random sample (easier said than done) and then determines what percentage of the
sample favors the candidate (say, 45 percent) or the brand of dog food (say, 28 percent), which
percentages are then taken to be estimates of the opinion of the population as a whole.

The only actual poll I ever took myself was informal and designed to answer the burning
question: What percentage of college women enjoy watching the Three Stooges? Eliminating
those unfamiliar with the Stooges' slapstick, physical, lowbrow comedy, I found that an
overwhelming 8 percent of my sample admitted to such an indulgence.

The care devoted to the selection of the above sample was not great, but at least the result, 8
percent, had a credible ring to it. One obvious problem with statements such as "67 percent (or 75
percent) of those surveyed favored tablet X" is that they may be based on tiny samples of three or
four. Even more extreme is the case where a celebrity endorses a diet or medicine or whatever, in
which case we have a sample of one, and generally a paid sample at that.

Thus, more difficult than making statistical estimates is deciding how much confidence we
should place in them. If the sample is large, we can have more confidence that its characteristics
are close to those of the population as a whole. If the distribution of the population is not too
dispersed or varied, we can, again, have more confidence that the sample's characteristics are
representative.

By utilizing a few principles and theorems in probability and statistics, we can come up with
so-called confidence intervals to estimate how likely a sample characteristic is to be representative
of the population as a whole. Thus, we might say that a 95 percent confidence interval for the
percentage of voters favoring candidate X is 45 percent plus or minus 6 percent. This means that
we can be 95 percent certain that the population percentage is within 6 percent of the sample
percentage; in this case, between 39 percent and 51 percent of the population favor candidate
X. Or we might say that a 99 percent confidence interval for the percentage of consumers
preferring brand Y dog food is 28 percent plus or minus 11 percent, meaning that we can be 99
percent certain that the population percentage is within 11 percent of the sample percentage;
in this case, between 17 percent and 39 percent of consumers prefer brand Y.

As with the case of hypothesis testing, however, there is no free lunch. For samples of a
given size, the narrower the confidence interval—that is, the more precise the estimate—the
less confident we can be of it. Conversely, the wider the confidence interval—that is, the less
precise the estimate—the more confident we can be of it. Of course, if we increase the size of
the sample, we can both narrow our interval and increase our confidence that it contains the
population percentage (or whatever the characteristic or parameter is), but it costs money to
increase sample sizes.

Surveys or polls which don't include confidence intervals or margins of error are often
misleading. More often than not, surveys do include such confidence intervals, but they don't
make it into the news story. Hedging or uncertainty is rarely newsworthy.

If the headline reads that unemployment declined from 7.1 percent to 6.8 percent and
doesn't say that the confidence interval is plus or minus 1 percent, one might get the mistaken
impression that something good happened. Given the sampling error, however, the "decline" may
be nonexistent, or there may even be an increase. If margins of error aren't given, a good rule of
thumb is that a random sample of one thousand or more gives an interval sufficiently narrow for



most purposes, while a random sample of one hundred or less gives too wide a margin for
most purposes.

Many people are surprised at how few individuals pollsters survey to get their results. (The
width of the confidence interval for percentages varies inversely as the square root of the size of
the sample.) Actually, they generally poll a larger number than is theoretically necessary to
compensate for problems associated with getting a random sample. When the random sample
selected contains one thousand people, the theoretical 95 percent confidence interval for
estimating the percentage who favor candidate X or dog food Y is about plus or minus 3
percent. Pollsters often use plus or minus 4 percent for this sample size because of
nonrespondents and other difficulties.

Consider the problems associated with a typical telephone poll. Will the results be affected by
leaving out homes without a telephone? What percentage of people refuse to respond, or hang up
when they learn a pollster is calling? Since the numbers are chosen at random, what's done
when a business phone is reached? What if no one is home, or a child answers the phone? What
effect does the sex (or voice or manner) of the telephone interviewer have on the responses? Is
the interviewer always careful or even honest in recording the responses? Is the method for
choosing exchanges and numbers random? Are the questions leading or biased? Are they
comprehensible? Whose answer counts if there are two or more adults at home? What methods
are used to weigh the results? If the poll concerns an issue about which opinions are changing
rapidly, how are the results affected by spreading the poll out over time?

Similar difficulties apply to personal-interview polls and mail polls as well. Asking
leading questions or using an insinuating tone is a common pitfall of personal-interview polls,
while an especially important concern in mail polls is avoiding self-selected samples where the
most committed, aroused, or otherwise atypical groups of people are more likely to be
respondents. (Such self-selected samples sometimes go by the more honest term of "lobby.")
The famous 1936 Literary Digest poll which predicted Alf Landon would beat Franklin
Roosevelt by a three-to-two margin was wrong because only 23 percent of the people who
were sent questionnaires returned them, and these generally were wealthier. A similar
shortcoming biased the 1948 poll which showed Thomas Dewey beating Harry Truman.

Magazines and newspapers are notorious for announcing biased results based on responses to
questionnaires appearing in the periodical. These informal polls rarely come with confidence
intervals or any details of the methods used, so the problem of self-selected samples is not
always immediately apparent. When feminist author Shere Hite or columnist Ann Landers
reports that a surprisingly high percentage of their respondents are having affairs or would
rather not have had children, we should automatically ask ourselves who is most likely to answer
these questionnaires: someone having an affair or someone reasonably content, someone
exasperated by her kids or someone happy with them.

Self-selected samples are not much more informative than a list of correct predictions by a
psychic. Unless you get the complete list of predictions or a randomly selected subset, the correct
predictions mean nothing. Some of them are bound to turn out true by chance. Similarly, unless
your poll sample is randomly selected and not self-selected, the poll results usually mean very
little.



In addition to being wise to the problem of self-selected samples, the numerate consumer
should also understand the related problem of the self-selected study. If company Y commissions
eight studies comparing the relative merits of its product and that of its competitor, and seven of the
eight conclude that its competitor's product is superior, it's not hard to predict which study company
Y will cite in its television commercials.

As in the chapters on coincidence and pseudo-science, we see that the desire to filter and
emphasize information is at odds with the desire to obtain a random sample. Especially for the
innumerate, a few vivid predictions or coincidences often carry more weight than much more
conclusive but less striking statistical evidence.

Because of this, it's unclear to me why a collection of intimate profiles or personal stories is so
frequently termed a poll. If done well, such a collection is more engaging (even if less convincing)
than the typical poll or survey and loses much of its value when wrapped in the ill-fitting shroud
of a scientific survey.

OBTAINING PERSONAL INFORMATION

The name of the game in statistics is the inferring of information about a large population
by examining characteristics of a small, randomly selected sample. The techniques
involved—from the enumerative induction of Francis Bacon to the theories of hypothesis
testing and experimental design of Karl Pearson and R. A. Fisher, the founding fathers of
modern statistics—all depend on this (now) obvious insight. Several unusual ways of obtaining
information follow.

The first, which will perhaps become increasingly important in an inquisitive age which
professes to still value privacy, makes it possible to obtain sensitive information about a group
of people without compromising any person's privacy. Assume we have a large group of people
and want to discover what percentage of them have engaged in a certain sex act, in order to
determine what practices are most likely to lead to AIDS.

What can we do? We ask everyone to take a coin from his or her purse or wallet and direct
them to flip it once. Without letting anyone else see the outcome, they should note whether it
lands on heads or tails. If the coin lands heads, the person should answer the question honestly:
Has he or she ever engaged in the given sexual practice—yes or no? If it comes up tails, the
person should simply answer yes.

Thus, a yes response could mean one of two things, one quite innocuous (the coin's landing
tails), the other potentially embarrassing (engaging in the sex act). Since the experimenter can't
know what yes means, people presumably will be honest.

Let's say that 620 of 1,000 responses are yes. What does this indicate about the percentage
of people who engage in the sex act? Approximately 500 of the 1,000 people will answer yes
simply because the coin landed tails. That leaves 120 people who answered yes out of the 500
who replied to the question honestly (those whose coins landed heads). Thus, 24 percent
(120/500) is the estimate for the percentage of people who engage in the sex act.



There are many refinements of this method that can be used to learn more detail, such as
how many times people engaged in the sex act. Some variations of the method can be more
informally implemented, and could be used by a spy agency to estimate the number of
dissidents in an area, or by an advertising agency to estimate the market for a product whose
attractiveness people are likely to deny. The raw data for the calculations can come from
public sources and, appropriately massaged, can yield surprising conclusions.

Another somewhat uncommon way of obtaining information is the so-called
capture-recapture method. Assume we want to know how many fish are in a certain lake. We
capture one hundred of them, mark them, and then let them go. After allowing them to
disperse about the lake, we catch another hundred fish and see what fraction of them are
marked.

If eight of the hundred we capture are marked, then a reasonable estimate of the fraction of
marked fish in the whole lake is 8 percent. Since this 8 percent is constituted by the one
hundred fish we originally marked, the number of fish in the whole lake can be determined by
solving the proportion: 8 (marked fish in the second sampling) is to 100 (the total number of
the second sampling) as 100 (the total number marked) is to N (the total number in the lake).
N is about 1,250.

Of course, care must be taken that the marked fish don't die as a result of the marking, that
they're more or less uniformly distributed about the lake, that the marked ones aren't only the
slower or more gullible among the fish, etc. As a way to get a rough estimate, however, the
capture-recapture method is effective, and of more generality than the fish example might
suggest.

Statistical analyses of works whose authorship is disputed (books of the Bible, The Federalist
Papers, etc.) also depend on related clever ways of gleaning information from uncooperative
(because dead) sources.

TWO THEORETICAL RESULTS

A large part of the attraction of probability theory is the immediacy and intuitive appeal of
its practical problems and of the simple principles which enable us to solve many of them. Still,
the following two theoretical results are of such fundamental importance that I'd be derelict
were I not to mention them at all.

The first is the law of large numbers, one of the most significant though often misunderstood
theorems in probability theory, and one which people sometimes invoke to justify all sorts of
bizarre conclusions. It states simply that in the long run the difference between the probability of
some event and the relative frequency with which it occurs approaches zero.

In the special case of a fair coin, the law of large numbers, first described by James Bernoulli in
1713, tells us that the difference between 1/2 and the quotient of the total number of heads obtained
divided by the total number of flips can be proved to get arbitrarily close to zero as the number of
flips increases. Remember from the discussion on losers and fair coins in Chapter 2 that this doesn't



mean that the difference between the total number of heads and the total number of tails will get
smaller as the number of flips increases; generally, quite the opposite happens. Fair coins behave
well in a ratio sense, but not in an absolute sense. And contrary to countless barroom
conversations, the law of large numbers doesn't imply the gambler's fallacy: that a head is more
likely after a string of tails.

Among other things the law justifies is the experimenter's belief that the average of a bunch
of measurements of some quantity should approach the true value of the quantity as the number of
measurements increases. It also provides the rationale for the common-sense observation that if
a die is rolled N times, the chances that the number of 5s obtained differs much from N/6 gets
smaller and smaller as N gets larger.

Succinctly: The law of large numbers gives a theoretical basis for the natural idea that a
theoretical probability is some kind of guide to the real world, to what actually happens.

The normal bell-shaped curve seems to describe many phenomena in nature. Why? Another very
important theoretical result in probability theory, the so-called central limit theorem, provides the
theoretical explanation for the prevalence of this normal Gaussian distribution (named after Carl
Friedrich Gauss, one of the greatest mathematicians of the nineteenth or any other century). The
central limit theorem states that the sum (or the average) of a large bunch of measurements
follows a normal curve even if the individual measurements themselves do not. What does this
mean?

Imagine a factory which produces small batteries for toys, and assume that the factory is run
by a sadistic engineer who ensures that about 30 percent of the batteries burn out after only five
minutes, and the remaining 70 percent last for approximately a thousand hours before burning
out. The distribution of the lifetimes of these batteries is clearly not described by a normal
bell-shaped curve, but rather by a U-shaped curve consisting of two spikes, one at five minutes
and a bigger one at a thousand hours.

Assume now that these batteries come off the assembly line in random order and are packed
in boxes of thirty-six. If we decide to determine the average lifetime of the batteries in a box, we'll
find it to be about 700 or so; say, 709. If we determine the average lifetime of the batteries in
another box of thirty-six, we'll again find the average lifetime to be about 700 or so, perhaps 687.
In fact, if we examine many such boxes, the average of the averages will be very close to 700, and
what's more fascinating, the distribution of these averages will be approximately normal
(bell-shaped), with the right percentage of packages having averages between 680 and 700, or
between 700 and 720, and so on.

The central limit theorem states that under a wide variety of circumstances this will always be
the case—averages and sums of nonnormally distributed quantities will nevertheless themselves
have a normal distribution.

The normal distribution also arises in the measuring process. Here the theorem provides the
theoretical support for the fact that the measurements of any quantity tend to follow a normal
bell-shaped "error curve" centered on the true value of the quantity being measured. Other
quantities which tend to follow a normal distribution might include age-specific heights and
weights, water consumption in a city for any given day, widths of machined parts, I.Q.s (whatever
it is that they measure), the number of admissions to a large hospital on any given day, distances of
darts from a bull's-eye, leaf sizes, breast sizes, or the amount of soda dispensed by a vending



machine. All these quantities can be thought of as the average or sum of many factors (genetic,
physical, or social), and thus the central limit theorem explains their normal distribution.

Succinctly: Averages (or sums) of quantities tend to follow a normal distribution even when
the quantities of which they're the average (or sum) don't.

CORRELATION AND CAUSATION

Correlation and causation are two quite different words, and the innumerate are more
prone to mistake them than most. Quite often, two quantities are correlated without either one
being the cause of the other.

One common way in which this can occur is for changes in both quantities to be the result of
a third factor. A well-known example involves the moderate correlation between milk
consumption and the incidence of cancer in various societies. The correlation is probably
explained by the relative wealth of these societies, bringing about both increased milk
consumption and more cancer due to greater longevity. In fact, any health practice, such as
milk drinking, which correlates positively with longevity will probably do the same with cancer
incidence.

There is a small negative correlation between death rates per thousand people in various
regions of the country and divorce rates per thousand marriages in the same regions. More
divorce, less death. Again, a third factor, the age distribution of the various regions, points
toward an explanation. Older married couples are less likely to divorce and more likely to die
than younger married couples. In fact, because divorce is such a wrenching, stressful
experience, it probably raises one's risk of death, and thus the reality is quite contrary to the
above misleading correlation. Another example of a correlation mistaken for a cause: In the
New Hebrides Islands, body lice were considered a cause of good health. As in many folk
observations, there was some evidence for this. When people took sick, their temperatures rose and
caused the body lice to seek more hospitable abodes. The lice and good health both departed because
of the fever. Similarly, the correlation between the quality of a state's day-care programs and the
reported rate of child sex abuse in them is certainly not causal, but merely indicates that better
supervision results in more diligent reporting of the incidents which do occur.

Sometimes correlated quantities are causally related, but other "confounding" factors
complicate and obscure the causal relations. A negative correlation—for example, between the
degree held by a person (B.S., M.A. or M.B.A., Ph.D.) and that person's starting salary—may be
clarified once the confounding factor of different types of employers is taken into account. Ph.D.s
are more likely to accept relatively lower-paying academic employment than people with
bachelor's or master's degrees who go into industry, and thus the higher degree and this latter
fact bring about the lower starting salary; a higher degree by itself doesn't lower one's salary.
Smoking is without doubt a significant contributory cause of cancer, lung and heart disease, but
there are confounding factors having to do with life-style and environment which partially
obscured this fact for some years.



There is a small correlation between a woman's being single and her having gone to college.
There are many confounding factors, however, and whether there's any causal relation between the
two phenomena is unclear, as is its direction, if there is one. It may be that a woman's tendency
toward "spinster-hood" is a contributory cause to her attending college, rather than the other way
around. Incidentally, Newsweek once stated that the chances of a college-educated single woman
over thirty-five getting married were smaller than her chances of being killed by a terrorist. The
remark was probably intentional hyperbole, but I heard it quoted as fact by a number of media
people. If there were an innumeracy-of-the-year award, this statement would be a strong contender
for it.

Finally, there are many purely accidental correlations. Studies reporting small nonzero
correlations are often merely reporting chance fluctuations, and are about as meaningful as a coin
being flipped fifty times and not coming up heads half the time. Too much research in the social
sciences, in fact, is a mindless collection of such meaningless data. If property X (say, humor) is
defined in this way (number of laughs elicited by a collection of jokes), and property Y (say,
self-esteem) is defined in that way (number of yes responses to some list of positive traits), then
the correlation coefficient between humor and self-esteem is .217. Worthless stuff.

Regression analysis, which attempts to relate the values of quantity X to those of quantity Y,
is a very important tool in statistics but is frequently misused. Too often, we get results similar
to the above examples or something like Y = 2.3 X + R, where R is a random quantity whose
variability is so large as to inundate the presumed relationship between X and Y.

Such faulty studies are frequently the basis for psychological tests for employment,
insurance rates, and creditworthiness. You may make a fine employee or deserve low premiums
or a good credit rating, but if your correlatives are perceived to be lacking in some way, you'll
have difficulty, too.

BREAST CANCER, MUGGINGS, AND WAGES:
SIMPLE STATISTICAL MISTAKES

Hypothesis testing and estimates of confidence, regression analysis, and
correlation—though all are liable to misinterpretation, the most common sorts of statistical
solecisms involve nothing more complicated than fractions and percentages. This section
contains a few typical illustrations.

That one out of eleven women will develop breast cancer is a much cited statistic. The
figure is misleading, however, in that it applies only to an imaginary sample of women all of
whom live to age eighty-five and whose incidence of contracting breast cancer at any given age is
the present incidence rate for that age. Only a minority of women live to age eighty-five, and
incidence rates are changing and are much higher for older women.

At age forty, approximately one woman in a thousand develops breast cancer each year,
whereas at age sixty the rate has risen to one in five hundred. The typical forty-year-old has
about a 1.4 percent chance of developing the disease before age fifty and a 3.3 percent chance of



developing it before sixty. To exaggerate a bit, the one-in-eleven figure is a little like saying that
nine out of ten people will develop age spots, which doesn't mean it should be a major
preoccupation of thirty-year-olds.

Another example of a technically correct yet misleading statistic is the fact that heart disease
and cancer are the two leading killers of Americans. This is undoubtedly true, but according to the
Centers for Disease Control, accidental deaths—in car accidents, poisonings, drownings, falls, fires,
and gun mishaps—result in more lost years of potential life, since the average age of these victims
is considerably lower than that of the victims of cancer and heart disease.

The elementary-school topic of percentages is continually being misapplied. Despite a good
deal of opinion to the contrary, an item whose price has been increased by 50 percent and then
reduced by 50 percent has had a net reduction in price of 25 percent. A dress whose price has been
"slashed" 40 percent and then another 40 percent has been reduced in price by 64 percent, not 80
percent.

The new toothpaste which reduces cavities by 200 percent is presumably capable of removing
all of one's cavities twice over, maybe once by filling them and once again by placing little bumps
on the teeth where they used to be. The 200 percent figure, if it means anything at all, might
indicate that the new toothpaste reduces cavities by, say 30 percent, compared to some standard
toothpaste's reduction of cavities by 10 percent (the 30 percent reduction being a 200 percent
increase of the 10 percent reduction). The latter phrasing, while less misleading, is also less
impressive, which explains why it isn't used.

The simple expedient of always asking oneself: "Percentage of what?" is a good one to adopt. If
profits are 12 percent, for example, is this 12 percent of costs, of sales, of last year's profits, or of
what?

Fractions are another source of frustration for many innumerates. A Presidential candidate in
1980 was reported to have asked his press entourage how to convert 2/7 to a percentage, explaining
that the homework problem was assigned to his son. Whether this report is accurate or not, I'm
convinced that a sizable minority of adult Americans wouldn't be able to pass a simple test on
percentages, decimals, fractions, and conversions from one to another. Sometimes when I hear that
something or other is selling at a fraction of its normal cost, I comment that the fraction is
probably 4/3, and am met with a blank stare.

A man is downtown, he's mugged, and he claims the mugger was a black man. However, when
the scene is reenacted many times under comparable lighting conditions by a court investigating
the case, the victim correctly identifies the race of the assailant only about 80 percent of the time.
What is the probability his assailant was indeed black?

Many people will of course say that the probability is 80 percent, but the correct answer,
given certain reasonable assumptions, is considerably lower. Our assumptions are that
approximately 90 percent of the population is white and only 10 percent black, that the downtown
area in question typifies this racial composition, that neither race is more likely to mug people, and
that the victim is equally likely to make misidentifications in both directions, black for white and
white for black. Given these premises, in a hundred muggings occurring under similar
circumstances, the victim will on average identify twenty-six of the muggers as black—80 percent
of the ten who actually were black, or eight, plus 20 percent of the ninety who were white, or
eighteen, for a total of twenty-six. Thus, since only eight of the twenty-six identified as black were



black, the probability that the victim actually was mugged by a black given that he said he was is
only 8/26, or approximately 31 percent!

The calculation is similar to the one on false positive results in drug testing, and, like it,
demonstrates that misinterpreting fractions can be a matter of life and death.

According to government figures released in 1980, women earn 59 percent of what men do.
Though it's been quoted widely since then, the statistic isn't strong enough to support the burden
placed on it. Without further detailed data not included in the study, it's not clear what
conclusions are warranted. Does the figure mean that for exactly the same jobs that men perform,
women earn 59 percent of the men's salaries? Does the figure take into account the increasing
number of women in the work force, and their age and experience? Does it take into account the
relatively low-paying jobs many women have (clerical, teaching, nursing, etc.)? Does it take into
account the fact that the husband's job generally determines where a married couple will live?
Does it take into account the higher percentage of women working toward a short-term goal? The
answer to all these questions is no. The bald figure released merely stated that the median
income of full-time women workers was 59 percent of that for men.

The purpose of the above questions is not to deny the existence of sexism, which is certainly
real enough, but to point out an important example of a statistic which by itself is not very
informative. Still, it's always cited and has become what statistician Darrell Huff has called a
semi-attached figure, a number taken out of context with little or no information about how it was
arrived at or what exactly it means.

When statistics are presented so nakedly, without any information on sample size and
composition, methodological protocols and definitions, confidence intervals, significance levels, etc.,
about all we can do is shrug or, if sufficiently intrigued, try to determine the context on our own.
Another sort of statistic often presented nakedly takes this form: the top X percent of the country
owns Y percent of its wealth, where X is shockingly small and Y is shockingly big. Most statistics of
this type are shockingly misleading, although, once again, I don't mean to deny that there are a lot
of economic inequities in this country. The assets that rich individuals and families own are
seldom liquid, nor are they of purely personal significance or value. The accounting procedures
used to measure these assets are frequently quite artificial, and there are other complicating
factors which are obvious with a little thought.

Whether public or private, accounting is a peculiar blend of facts and arbitrary procedures
which usually require decoding. Government employment figures jumped significantly in 1983,
reflecting nothing more than a decision to count the military among the employed. Similarly,
heterosexual AIDS cases rose dramatically when the Haitian category was absorbed into the
heterosexual category.

Adding, though pleasant and easy, is often inappropriate. If each of the ten items needed for
the manufacture of something or other has risen 8 percent, the total price has risen just 8 percent,
not 80 percent. As I mentioned, a misguided local weathercaster once reported that there was a
50 percent chance of rain on Saturday and a 50 percent chance on Sunday, and so, he concluded, "it
looks like a 100 percent chance of rain this weekend." Another weathercaster announced that it
was going to be twice as warm the next day, since the temperature would rise from 25 to 50.

There's an amusing children's proof that they don't have time for school. One-third of the
time they're sleeping, for a total of approximately 122 days. One-eighth of the time they're



eating (three hours a day), for a total of about 45 days. One-fourth of the time, or 91 days, is taken
up by summer and other vacations, and two-sevenths of the year, 104 days, is weekend. The sum
is approximately a year, so they have no time for school.

Such inappropriate additions, although generally not as obvious as that, occur all the time.
When determining the total cost of a labor strike or the annual bill for pet care, for example,
there's a tendency to add in everything one can think of, even if this results in counting some
things several times under different headings, or in neglecting to take account of certain resultant
savings. If you believe all such figures, you probably believe that children have no time to attend
school.

If you want to impress people, innumerates in particular, with the gravity of a situation, you
can always employ the strategy of quoting the absolute number rather than the probability of some
rare phenomenon whose underlying base population is large. Doing so is sometimes termed the
"broad base" fallacy, and we've already cited a couple of instances of it. Which figure to stress, the
number or the probability, depends on the context, but it's useful to be able to translate quickly
from one to the other so as not to be overwhelmed by headlines such as "Holiday Carnage Kills 500
Over Four-Day Weekend" (this is about the number killed in any four-day period).

Another example involves the spate of articles a few years ago about the purported link
between teenage suicide and the game of "Dungeons and Dragons." The idea was that teenagers
became obsessed with the game, somehow lost contact with reality, and ended up killing
themselves. The evidence cited was that twenty-eight teenagers who often played the game had
committed suicide.

This seems a fairly arresting statistic until two more facts are taken into account. First, the
game sold millions of copies, and there are estimates that up to 3 million teenagers played it.
Second, in that age group the annual suicide rate is approximately 12 per 100,000. These two facts
together suggest that the number of teenage "Dungeons and Dragons" players who could be
expected to commit suicide is about 360 (12 x 30)! I don't mean to deny that the game was a
causal factor in some of these suicides, but merely to put the matter in perspective.

ODDS AND ADDENDA

In this section are several addenda to earlier material in this chapter.
The urge to average can be seductive. Recall the chestnut about the man who reports that,

though his head is in the oven and his feet in the refrigerator, he's pretty comfortable on average.
Or consider a collection of toy blocks which vary between one and five inches on a side. The
average toy block in this collection, we might assume, is three inches on a side. The volume of
these same toy blocks varies between 1 and 125 cubic inches. Thus, we might also assume that the
average toy block has a volume of 63 cubic inches [(1 + 125)/2 = 63]. Putting the two assumptions
together, we conclude that the average toy block in this collection has the interesting property of
having three inches to a side and a volume of sixty-three cubic inches!



Sometimes a reliance on averages can have more serious consequences than misshapen
cubes. The doctor informs you that you have a dread disease, the average victim of which lives for
five years. If this is all you know, there may be some reason for hope. Perhaps two-thirds of the
people who suffer from this disease die within a year of its onset, and you've already survived for a
couple of years. Maybe the "lucky" one-third of its victims live from ten to forty years. The point is
that, if you know only the average survival time and nothing about the distribution of the survival
times, it's difficult to plan intelligently.

A numerical example: The fact that the average value of some quantity is 100 might mean that
all values of this quantity are between 95 and 105, or that half of them are around 50 and half
around 150, or that a fourth of them are 0, half of them are near 50, and a fourth of them are
approximately 300, or any number of other distributions which have the same average.

Most quantities do not have nice bell-shaped distribution curves, and the average or mean value
of these quantities is of limited importance without some measure of the variability of the
distribution and an appreciation of the rough shape of the distribution curve. There are any
number of everyday situations in which people develop a good intuition for the distribution curves
in question. Fast-food restaurants, for example, provide a product whose average quality is
moderate at best but whose variability is very low (aside from speed of service, their most
attractive feature). Traditional restaurants generally provide a product of higher average
quality but of much greater variability, especially on the downward side.

Someone offers you a choice of two envelopes and tells you one has twice as much money in
it as the other. You pick envelope A, open it, and find $100. Envelope B must, thus, have either
$200 or $50. When the proposer permits you to change your mind, you figure you have $100 to
gain and only $50 to lose by switching your choice, so you take envelope B instead. The
question is: Why didn't you choose B in the first place? It's clear that no matter what amount
of money was in the envelope originally chosen, given permission to change your mind, you
would always do so and take the other envelope. Without any knowledge of the probability of
there being various amounts of money in the envelopes, there is no way out of this impasse.
Variations of it account for some of the "grass is always greener" mentality that frequently
accompanies the release of statistics on income.

One more game. Flip a coin continuously until a tail appears for the first time. If this
doesn't happen until the twentieth (or later) flip, you win $1 billion. If the first tail occurs before
the twentieth flip, you must pay $100. Would you play?

There's one chance in 524,288 (219) that you'll win the billion dollars and 524,287 chances
in 524,288 that you'll lose $100. Even though you're almost certain to lose any particular bet,
when you win (which the law of large numbers predicts will happen about once every 524,288
times on the average), your winnings will more than make up for all your losses. Specifically,
your expected or average winnings when playing this game are (1/524,288) x (+ one billion) +
(524,287/524,288) x (- one hundred), or about $1,800 per bet. Still, most people will choose
not to play this game (a variant of the so-called St. Petersburg paradox) despite its average
payoff of almost $2,000.

What if you could play as often and as long as you pleased and didn't have to settle up until
you were finished playing? Would you play then?



Obtaining random samples is a difficult art, and the pollster doesn't always succeed. Neither,
for that matter, does the government. The 1970 draft lottery, wherein numbers from 1 to 366
were placed in little capsules to determine who was to be drafted, was almost certainly unfair.
The 31 capsules for January birth dates were placed in a large bin, then the 29 February
capsules, and so on up to December's 31 capsules. There was some mixing of the bin along
the way, but apparently not enough, since the December dates were disproportionately
represented among the early choices, whereas dates from the first months of the year came up
near the end significantly more often than chance would dictate. The 1971 lottery used
computer-generated tables of random numbers.

Randomness is not easy to obtain when playing cards, either, since shuffling a deck two or
three times is not enough to destroy whatever order it might have. As statistician Persi
Diaconis has shown, six to eight riffle shuffles are usually necessary. If a deck of cards in a known
order is shuffled only two or three times and a card is removed from it and replaced somewhere
else in the deck, a good magician can almost always locate it. Using a computer to generate a
random ordering to the cards is the best though perhaps an impractical way to get random decks.

One amusing way in which illegal gambling operations obtain daily random numbers which
are publicly accessible is to take the hundredth digit, the last and most volatile digit of each day's
Dow Jones Industrials, Transportation, and Utilities indices respectively, and juxtapose them. For
example, if the Industrials closed at 2213.27, the Transportation stocks at 778.31, and the Utilities
at 251.32, then the number for the day would be 712. Since the volatility of these last digits makes
them essentially random, every number from 000 to 999 is equally likely to come up. And no one
need fear that the numbers are being cooked either, since they appear in the prestigious Wall
Street Journal, as well as in more plebeian papers.

Randomness is essential, however, not just to ensure fair gambling, polling, and hypothesis
testing, but also for modeling any situation which has a large probabilistic component, and for this
purpose millions of random numbers are required. How long will someone have to wait in line at a
supermarket under different conditions? Design an appropriate program which models the
supermarket situation with its various constraints and instruct the computer to run through the
program a few million times to see how often different outcomes result. Many mathematical
problems are so intractable, and experiments involving them so expensive, that this kind of
probabilistic simulation is the only alternative to giving up on them. Even when a problem is
easier and it's possible to solve it completely, simulation is frequently faster and cheaper.

For most cases, the pseudorandom numbers generated by computers are good enough.
Random for most practical purposes, they are actually generated by a deterministic formula
which imposes sufficient order on the numbers as to render them useless for some applications.
One such application is to coding theory, which allows government officials, bankers, and others
to pass classified sensitive information without fear that it will be unscrambled. In these
cases, one mixes pseudorandom numbers from several computers, then incorporates the
physical indeterminacy of randomly fluctuating voltages from a "white noise" source.

Slowly emerging is the strange notion that randomness has an economic value.
Statistical significance and practical significance are two different things. A result is

statistically significant if it's sufficiently unlikely to have occurred by chance. This by itself
doesn't mean much. Several years ago, a study was conducted in which one group of volunteers



received a placebo and another group received very large doses of Vitamin C. The group
receiving Vitamin C contracted colds at a slightly lower rate than did the control group. The
size of the sample was big enough that it was quite unlikely that this effect was due to chance,
but the difference in rate was not all that impressive or significant in a practical sense.

A good number of medications have the property that they're demonstrably better than
nothing, but not by much. Medicine X which immediately alleviates 3 percent of all headaches
in test after test is certainly better than nothing, but how much would you spend on it? You can
be sure that it would be advertised as providing relief in a "significant" percentage of cases, but
the significance is only statistical.

Usually we encounter the opposite situation: the result is of potential practical significance
but of almost no statistical significance. If some celebrity endorses a brand of dog food, or some
cabdriver disapproves of the mayor's handling of a dilemma, there's obviously no reason to
accord statistical significance to these personal expressions. The same is true of women's
magazine quizzes: How to tell if he loves someone else; Does your man suffer from the Boethius
complex?; Which of the seven types of lover is your man? There's almost never any statistical
validation to the scoring of these quizzes: Why does a score of 62 indicate a man is unfaithful?
Maybe he's just getting over his Boethius complex. Where did this seven-part typology come
from? Though men's magazines often suffer from worse sorts of idiocies having to do with
violence and assassins for hire, they rarely have these fatuous quizzes in them.

There's a strong human tendency to want everything, and to deny that trade-offs are usually
necessary. Because of their positions, politicians are often more tempted than most to indulge in this
magical thinking. Trade-offs between quality and price, between speed and thoroughness, between
approving a possibly bad drug and rejecting a possibly good one, between liberty and equality, etc.,
are frequently muddled and covered with a misty gauze, and this decline in clarity is usually an
added cost for everyone.

For example, when the recent decisions by a number of states to raise the speed limit on
certain highways to 65 m.p.h. and not to impose stiffer penalties on drunk driving were challenged
by safety groups, they were defended with the patently false assertion that there would be no
increase in accident rates, instead of with a frank acknowledgment of economic and political
factors which outweighed the likely extra deaths. Dozens of other incidents, many involving the
environment and toxic wastes (money vs. lives), could be cited.

They make a mockery of the usual sentiments about the pricelessness of every human life.
Human lives are priceless in many ways, but in order to reach reasonable compromises, we must,
in effect, place a finite economic value on them. Too often when we do this, however, we make a
lot of pious noises to mask how low that value is. I'd prefer less false piety and a considerably
higher economic value placed on human lives. Ideally, this value should be infinite, but when it can't
be, let's hold the saccharine sentiments. If we're not keenly aware of the choices we're making,
we're not likely to work for better ones.



Close

We sail within a vast sphere, ever drifting in uncertainty, driven from end to end.—Pascal

A man is a small thing, and the night is very large and full of wonders. —Lord Dunsany

Probability enters our lives in a number of different ways. The first route is often through
randomizing devices such as dice, cards, and roulette wheels. Later we become aware that births,
deaths, accidents, economic and even intimate transactions all admit of statistical descriptions.
Next we come to realize that any sufficiently complex phenomenon, even if it's completely
deterministic, will often be amenable only to probabilistic simulation. Finally, we learn from
quantum mechanics that the most fundamental microphysical processes are probabilistic in
nature.

Not surprisingly, then, an appreciation for probability takes a long time to develop. In fact,
giving due weight to the fortuitous nature of the world is, I think, a mark of maturity and
balance. Zealots, true believers, fanatics, and fundamentalists of all types seldom hold any
truck with anything as wishy-washy as probability. May they all burn in hell for 1010 years (just
kidding), or be forced to take a course in probability theory.

In an increasingly complex world full of senseless coincidence, what's required in many
situations is not more facts—we're inundated already—but a better command of known facts,
and for this a course in probability is invaluable. Statistical tests and confidence intervals, the
difference between cause and correlation, conditional probability, independence, and the
multiplication principle, the art of estimating and the design of experiments, the notion of
expected value and of a probability distribution, as well as the most common examples and
counter-examples of all of the above, should be much more widely known. Probability, like
logic, is not just for mathematicians anymore. It permeates our lives.

At least part of the motivation for any book is anger, and this book is no exception. I'm
distressed by a society which depends so completely on mathematics and science and yet seems so
indifferent to the innumeracy and scientific illiteracy of so many of its citizens; with a military that
spends more than one quarter of a trillion dollars each year on ever smarter weapons for ever more
poorly educated soldiers; and with the media, which invariably become obsessed with this hostage
on an airliner, or that baby who has fallen into a well, and seem insufficiently passionate when it
comes to addressing problems such as urban crime, environmental deterioration, or poverty.

I'm pained as well at the sham romanticism inherent in the trite phrase "coldly rational" (as if
"warmly rational" were some kind of oxymoron); at the rampant silliness of astrology,
parapsychology, and other pseudosciences; and at the belief that mathematics is an esoteric
discipline with little relation or connection to the "real" world.

Still, irritation with these matters was only part of my incentive. The discrepancies between our
pretensions and reality are usually quite extensive, and since number and chance are among our
ultimate reality principles, those who possess a keen grasp of these notions may see these



discrepancies and incongruities with greater clarity and thus more easily become subject to
feelings of absurdity. I think there's something of the divine in these feelings of our absurdity,
and they should be cherished, not avoided. They provide perspective on our puny yet exalted
position in the world, and are what distinguish us from rats. Anything which permanently dulls
us to them is to be opposed, innumeracy included. The desire to arouse a sense of numerical
proportion and an appreciation for the irreducibly probabilistic nature of life—this, rather than
anger, was the primary motivation for the book.
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